en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张志强,男,1993年出生,硕士研究生。主要研究方向为化学气相沉积金刚石涂层技术。E-mail:1256192489@qq.com

通讯作者:

向道辉,男,1971年出生,博士,教授。主要研究方向为化学气相沉积金刚石涂层技术。E-mail:dhxiang@hpu.edu.cn

中图分类号:TG71

文献标识码:A

DOI:10.11933/j.issn.1007-9289.20201220001

参考文献 1
孙玉晶,孙杰,李剑峰.钛合金铣削加工刀具磨损有限元预测分析[J].机械工程学报,2016,52(5):193-201.SUN Yujing,SUN Jie,LI Jianfeng.Finite element analysis on prediction of tool wear in milling titanium [J].Chinese Journal of Mechanical Engineering,2016,52(5):193-201.
参考文献 2
计伟,刘献礼,孙轼龙.PCBN 刀具最新发展及应用 [J].航空制造技术,2012(14):77-82.JI Wei,LIU Xianli,SUN Shilong.Current development and application of PCBN cutting tool[J].Aeronautical Manufacturing Technology,2012(14):77-82.
参考文献 3
薛宏国.高性能复杂形状金刚石薄膜涂层刀具的制备与切削试验研究[D].上海:上海交通大学,2007.XUE Hongguo.Research on deposition of high quality diamond film on cutting tools with complex shape and their cutting performance[D].Shanghai:Shanghai Jiao Tong University,2007.
参考文献 4
ZHANG J G,WANG X C,SHEN B,et al.Effect of boron and silicon doping on improving the cutting performance of CVD diamond coated cutting tools in machining CFRP[J].International Journal of Refractory Metalsand Hard Materials,2013,41.
参考文献 5
邓福铭,陈立,刘畅,等.微米、纳米及微/纳米复合金刚石涂层的切削性能研究[J].金刚石与磨料磨具工程,2015,35(4):1-5,10.DENG Fuming,CHEN Li,LIU Chang,et al.Study on the cutting properties of micro-nano-and micro/nano diamond coatings[J].Diamond & Abrasives Engineering,2015,35(4):1-5,10.
参考文献 6
杨小璠,李友生,李凌祥,等.CVD 金刚石涂层工艺对硬质合金立铣刀铣削CFRP性能的影响[J].金刚石与磨料磨具工程,2018,38(2):37-41.YANG Xiaofan,LI Yousheng,LI Lingxiao,et al.Infiuence of CVD diamond coating process on performance of carbide end mill for cutting CFRP [J].Diamond & Abrasives Engineering,2018,38(2):37-41.
参考文献 7
CHEN L X,LIU Z Q,SHEN Q.Enhancing tribological performance by anodizing micro-textured surfaces with nano-MoS2 coatings prepared on aluminum-silicon alloys [J].Tribology International,2018,122:84-95.
参考文献 8
GAJRANI K K,SURESH S,SANKAR M R.Environmental friendly hard machining performance of uncoated and MoS2 coated mechanical micro-textured tungsten carbide cutting tools[J].Tribology International,2018,125:141-155.
参考文献 9
SINGH T,DVIVEDI A.On performance evaluation of textured tools during micro-channeling with ECDM[J].Journal of Manufacturing Processes,2018,32:699-713.
参考文献 10
MARCHETTO D,ROTA A,CALABRI L,et al.AFM investigation of tribological properties of nano-patterned silicon surface[J].Wear,2007,265(5):577-582.
参考文献 11
SUNG I H,LEE H S,KIM D E.Effect of surface topography on the frictional behavior at the micro/nanoscale[J].Wear,2003,254(10):1019-1031.
参考文献 12
LI J Q.Surface texture and its influence on tribological properties[J].Lubrication Engineering,2009,34(2):94-97,103.
参考文献 13
张克栋,邓建新,姜超,等.微纳织构涂层刀具研究进展[J].航空制造技术,2015(6):38-42.ZHANG Kedong,DENG Jianxian,JIANG Chao,et al.Development of micro/nano-textured coated cutting tool [J].Aeronautical Manufacturing Technology,2015(6):38-42.
参考文献 14
孙加林,周咏辉,邓建新.织构化涂层刀具研究进展 [J].工具技术,2015,49(7):3-7.SUN Jialin,ZHOU Yonghui,DENG Jianxin.Research on textured coating tool[J].Journal of Tools and Technology,2015,49(7):3-7.
参考文献 15
唐晓龙,徐锋,徐俊华,等.掺硼金刚石/硬质合金膜基结合和摩擦磨损性能的研究[J].功能材料,2016,47(3):3181-3185.TANG Xiaolong,XU Feng,XU Junhua,et al.Adesive and tribological properties of born-doped diamond films on cemented carbide [J].Journal Function Material,2016,47(3):3181-3185.
参考文献 16
许青波,王传新,王涛,等.硼掺杂金刚石薄膜的制备和性能研究[J].金刚石与磨料磨具工程,2018,38(3):11-15,20.XU Qingbo,WANG Chuanxin,WANG Tao,et al.Preparation and properties of boron doped diamond films [J].Diamond & Abrasives,2018,38(3):11-15,20.
参考文献 17
王明政,王成彪,康嘉杰,等.激光表面织构形状参数对钛合金摩擦学性能的影响[J].中国表面工程,2017,30(4):71-77.WANG Mingzheng,WANG Chengbiao,KANG Jiajie,et al.Effects of shape parameters of laser surface texture on tribological performance of titanium alloy[J].China Surface Engineering,2017,30(4):71-77.
参考文献 18
WANG Q W,YANG Y,YAO P,et al.Friction and cutting characteristics of micro-textured diamond tools fabricated with femtosecond laser[J].Tribology International,2021,154:106720.
参考文献 19
张贵梁,邓建新,葛栋良,等.硬质合金表面正弦微织构对其摩擦磨损性能的影响的研究[J].工具技术,2018,52(1):1-12.ZHANG Guiliang,DENG Jianxin,GE Dongliang,et al.Effect of sine-type surface macrotexture on tribological property of carbide [J].Tool Engineering,2018,52(1):1-12.
参考文献 20
ZHANG Z,LU W Z,LIU W,et al.Friction-reducing effect and damage mechanism of laser micro-texture on diamond films during friction[J].Modern Physics Letters B,2019,33(24):1950283.
参考文献 21
CHEN S C,QIAN G C,YANG L.Precise control of surface texture on carbon film by ion etching through filter:Optimization of texture size for improving tribological behavior[J].Surface and Coatings Technology,2019,362:105-112.
参考文献 22
常秋英,齐烨,王斌,等.激光表面织构对45钢干摩擦性能的影响[J].机械工程学报,2017,53(3):148-154.CHANG Qiuying,QI Ye,WANG Bin,et al.Tribological influence of laser surface textures on 45 steel under dry sliding [J].Journal of Mechanical Engineering,2017,53(3):148-154.
参考文献 23
张克栋,邓建新.基体表面织构化TiAlN涂层刀具的制备与应用的基础研究[J].机械工程学报,2019,55(8):105.ZAHNG Kedong,DENG Jianxin,Study on fabrication and application of TiALN coated tools with textured substrate surface [J].Journal of mechanical engineering,2019,55(8):105.
参考文献 24
GAJRANI K K,SANKAR M R.State of the art on micro to nano textured cutting tools[J].Materials Today:Proceedings,2017,4(2):3776-3785.
参考文献 25
SOMMER M,SMITH F.Effect of oxygen on filament activity in diamond chemical vapor deposition [J].J.Vac.Sci.Technol.A.Vacuum,Surfaces,and Films,1991,9:1134-1139.
参考文献 26
TERASHIMA C,ARIHARA K,OKAZAKI S,et al.Fabrication of vertically aligned diamond whiskers from highly boron-doped diamond by oxygen plasma etching [J].ACS Applied Materials & Interfaces,2011,3:177-182.
参考文献 27
ZOU Y,LI Z,YANG H.Microstructure and field electron emission properties of boron doped diamond films [J].Surface Engineering,2011,27:294-299.
参考文献 28
KUMAR D,CHANDRAN M,RAMACHANDRA R M.Effect of boron doping on first-order Raman scattering in superconducting boron doped diamond films [J].Applied Physics Letters,2017,110:191602.
参考文献 29
廖克俊,王万录,张振刚,等.热灯丝CVD金刚石膜硼掺杂效应研究 [J].物理学报,1996(10):173-178.LIAO Kejie,WANG Wanlu,ZHANG Zhengang,et al.Study of boron-doped diamond films by hot filament CVD [J].Acta Physica Sinica,1996(10):173-178.
参考文献 30
CABRAL G,GABLER J,LINDNER J,et al.A study of diamond film deposition on WC-Co inserts for graphitemachining:Effectiveness of SiC interlayers prepared by HFCVD[J].Diamond & Related Materials,2008,17:1008-1014.
参考文献 31
HU J,CHOU Y K,THOMPSON R G.Nanocrystalline diamond coating tools for machining high-strength Al alloys[J].International Journal of Refractory Metals and Hard Materials,2007,26(3).
参考文献 32
ABREU C S,AMARAL M,F J OLIVEIRA,et al.HFCVD nanocrystalline diamond coatings for tribo-applica tions in the presence of water[J].Diamond & Related Materials,2008,18(2).
参考文献 33
CHEN S L,SHEN B,SUN F H.The influence of normal load on the tribological performance of electrophoretic deposition prepared graphene coating on micro-crystalline diamond surface [J].Diamond & Related Materials,2017,76:50-57.
目录contents

    摘要

    利用激光技术在硬质合金刀具上分别制备椭圆织构和沟槽织构。 同时,利用热丝化学气相沉积法(HFCVD)在刀具上分别制备硼掺杂无织构金刚石(Boron doped un-texture diamond film, BDUTD film)薄膜、硼掺杂椭圆织构金刚石(Boron doped elliptical textured diamond film, BDETD film)薄膜以及硼掺杂沟槽织构金刚石(Boron doped groove textured diamond film, BDGTD film)薄膜,通过摩擦磨损试验机,对不同织构形状的薄膜进行摩擦试验研究。 另外,采用扫描电镜( SEM)、拉曼光谱(Raman) 和能谱分析(EDX)对表面形貌、成分及残余物质进行分析。 试验结果表明,BDUTD 薄膜表现出最大平均摩擦因数,其值为 0. 13。 BDETD 以及 BDGTD 薄膜的平均摩擦因数分别为 0. 124 和 0. 123。 从磨损形貌来看,BDUTD 薄膜及 BDGTD 薄膜对偶件的磨损直径分别为 1. 506 mm 和 1. 254 mm。 BDUTD 薄膜的磨损表面黏附有少量团簇状的磨屑,且有破裂的金刚石晶粒出现。 BDGTD 薄膜的表面织构沟槽中有少量磨屑,金刚石晶粒几乎没有出现磨损。

    Abstract

    cemented carbide tools were provided with elliptical and groove textures using laser technology. boron-doped untextured diamond (BDUTD), boron-doped elliptical textured diamond (BDETD), and boron-doped grooved textured diamond (BDGTD) films were prepared by hot filament chemical vapor deposition (HFCVD). The friction test of films with different texture shapes was carried out on ball-on-disc friction tester. In addition, SEM, Raman and EDX were used to analyze the surface morphology, composition, structure and residual materials. The results show that BDUTD film shows the maximum average friction coefficient, which is 0. 13. The average friction coefficient of BDETD Film and BDGTD film are 0. 124 and 0. 123, respectively. From the wear morphology, the wear diameter of BDUTD film and BDGTD film is 1. 506 mm and 1. 254 mm respectively. The wear surface of BDUTD film is adhered with a small amount of cluster debris, and there are broken diamond grains. There is a small amount of wear debris in the texture groove of BDGTD film, and the diamond grains hardly wear.

  • 0 前言

  • 刀具表面磨损在机械加工中普遍存在,特别是在加工高硬度及难加工材料方面,传统的硬质合金刀具难以满足切削加工的需要[1-2]。因此硬质合金刀具和金刚石涂层技术相互结合,既表现出金刚石具有的高硬度、高耐磨性、摩擦因数低的特点,又表现出硬质合金具有的抗冲击性和强韧性,可以满足碳/碳化硅复合、有色金属、碳纤维增强复合等材料的加工[3]。表面涂层技术被用于降低切削刀具与被加工零件之间的相互机械绞合效应,减小产生化学反应现象,并且能够减少刀具与加工零件之间的摩擦,从而提高切削刀具的使用寿命和切削加工性能[4-6]。摩擦学和仿生学的研究表明,表面织构可以显著改善摩擦副之间的摩擦特性[7-9]。为了实现在机械加工过程中减小刀具磨损,提高刀具的使用寿命,表面织构技术被广泛的运用在刀具和摩擦学领域中。然而,摩擦表面并不是越光滑就越好,具有合理的织构形状的表面有较好的摩擦学特性。因此制备合理的表面织构几何形貌可以有效提高摩擦副表面的摩损性能,对改善摩擦副表面摩擦磨损性能和接触面润滑效果具有重要意义[10-12]。表面织构使得刀具在切削过程中与工件之间形成了一层润滑油膜,从而提高了工件的已加工表面质量,减小了刀具的磨损,提高了刀具的使用寿命[13-14]

  • 唐晓龙等[15] 在硬质合金表面制备了掺硼金刚石涂层,对金刚石刀具涂层进行了摩擦磨损试验,研究了涂层在不同环境温度下的摩擦因数及磨损率, 结果表明,适量的硼掺杂可以细化晶粒,提高基膜结合强度,降低摩擦因数并提高耐磨性。许青波等[16] 研究了硼流量对硼掺杂金刚石薄膜性能影响,结果表明,硼流量增大,会使金刚石薄膜的电阻减少,且当硼流量达到一定值后,会使薄膜质量明显下降。王明政等[17]利用激光技术在TC4钛合金样品表面刻蚀出具有不同分布形状的织构,试验结果表明,网格型织构的摩擦因数相对于沟槽型和点阵型织构来说更小且更稳定。 WANG等[18] 利用飞秒激光在金刚石刀具的前刀面上制备了直槽形、同心圆形、环形和网格织构。研究了织构对金刚石的摩擦学性能的影响,结果表明,除同心圆形织构外,织构化金刚石刀具的摩擦因数都大大降低。在水润滑条件下,所有的织构都提高金刚石刀具的摩擦性能。张贵梁等[19]利用激光技术在硬质合金表面制备了一种正弦状沟槽型微织构,并在UMT-2摩擦磨损试验机上进行直线往复式摩擦磨损试验,试验结果表明,在相同条件下,正弦型微沟槽表面的减磨性能优于传统直线型微沟槽,且在高载荷和高滑动速度并添加润滑脂的条件下,正弦型微织构试样表面的摩擦磨损性能更好。卢文壮等[20] 通过激光技术在金刚石薄膜上制备周期性线性以及凹坑表面微织构,研究表面微织构对晶格畸变、裂纹以及残余应力的影响。试验结果表明,沟槽微织构释放了残余应力,表面微织构能够有效的减摩。杨磊等[21] 通过一种过滤器进行离子刻蚀在类金刚石薄膜表面制备尺寸可调的凹坑织构,并通过摩擦磨损试验探究凹坑织构参数对摩擦性能的影响。试验结果表明,摩擦因数和磨损寿命受织构参数的影响很大,并且存在最佳的凹坑深度和直径,在该深度和直径下,类金刚石薄膜表现出最低的摩擦因数和最长的磨损寿命。常秋英等[22]研究了表面织构对不同硬度45钢试件干摩擦磨损性能的影响。研究表明:合理的织构形貌在干摩擦条件下对摩擦副的影响很大,表面织构能够改善干摩擦的磨损性能。张克栋等[23] 利用激光微加工技术进行了WC/Co基体表面微纳织构的制备, 研究了基体表面织构化TiAlN涂层的摩擦磨损性能。结果表明,摩擦副接触表面之间相互摩擦挤压作用可将储存在微沟槽中的MoS2 润滑剂不断析出补给,从而在摩擦接触面形成MoS2 润滑层;同时, 微织构可通过扑捉、存储磨损颗粒的作用有效减缓TiAlN涂层的磨损程度。

  • 目前国内外对硼掺杂和织构技术相结合制备的金刚石薄膜在水润滑条件下的摩擦特性的研究还较少。此篇论文主要讨论硼掺杂和不同织构形状对金刚石薄膜质量的影响。通过HFCVD沉积装置在硬质合金可转位铣刀上分别制备了硼掺杂无织构金刚石薄膜(BDUTD film)刀具、硼掺杂椭圆织构金刚石薄膜(BDETD film) 刀具以及硼掺杂沟槽织构金刚石薄膜(BDGTD film)刀具。运用扫描电镜( SEM)、拉曼光谱(Raman)和能谱仪(EDX)对表面形貌、成分、结构及残余物质进行分析。

  • 1 试验条件与方法

  • 1.1 硼掺杂金刚石涂层织构化刀具的制备

  • 通过HDM-50半导体激光器进行加工硬质合金织构化刀具。激光器整机功率为60W,激光波长为1 200nm,脉冲宽度为50ns,扫描速度为30m/s, 加工织构参数如表1所示。

  • 表1 织构参数

  • Table1 Parameters of the texture

  • 同时采用HFCVD法制备硼掺杂织构化金刚石薄膜,利用丙酮和硼酸三甲酯的混合物通过氢气鼓泡法将部分反应气体引入真空反应室,以提供硼原子和碳原子, 在硬质合金基体上沉积金刚石薄膜[24]。为了消除钽丝与丙酮反应消耗碳源及反应过程中生成的杂质对金刚石薄膜表面质量的影响,在沉积试验前必须进行碳化处理,使钽丝表面形成一层稳定的碳化钽化合物[25]。表2所示,沉积完成后的硼掺杂织构化金刚石涂层刀具,采用扫描电子显微镜观测,实物图如图1所示。

  • 表2 硼掺杂金刚石薄膜沉积参数

  • Table2 Deposition parameters for fabricating boron doped diamond films

  • 图1 硼掺杂织构化金刚石薄膜刀具表面形貌

  • Fig.1 Surface morphology of boron doped-textured diamond film tools

  • 1.2 摩擦磨损试验原理与方法

  • 在TBT-M5000摩擦试验机上,进行硼掺杂织构化金刚石薄膜的摩擦磨损试验,摩擦方式为“球盘”往复式直线运动。其中下试样为BDUTD薄膜、 BDETD薄膜、BDGTD薄膜,上试样为摩擦磨损试验机配备的直径为10mm的GCr15轴承钢球。为了消除试样表面杂质对试验的准确性有一定的影响, 在测试之前,将试样装有丙酮溶液的超声清洗机里进行超声清洗半小时。具体的摩擦磨损试验参数如表3所示。

  • 表3 摩擦磨损试验参数

  • Table3 Friction and wear experiment parameters

  • 图2 显示了金刚石薄膜磨损体积及摩擦球磨损体积示意图。

  • 图2 摩擦球磨损体积及金刚石薄膜磨损体积示意图

  • Fig.2 Schematic diagram of friction ball wear volume and diamond film wear volume

  • 假设摩擦球被磨损部分的投影可近似看作圆形,那么,摩擦球磨痕直径为 L,则球的磨损体积可近似为半径为 R 的球被削去高为 H 的部分的体积。那么可设球缺高为 H,则,HL 的关系为

  • H=R-R2-L22
    (1)
  • 摩擦球磨损的体积为

  • Vq=πH2R-H3
    (2)
  • 摩擦球磨损率为

  • Wq=VqFS
    (3)
  • 金刚石薄膜磨损体积在测量过程中先测量整个原始表面的平均高度,然后以此平均高度为

  • 基准测量磨痕截面的截面积,并计算整个的磨损体积。由图2b可知,金刚石薄膜磨损体积可根据阴影部分面积进行积分可得,则金刚石薄膜磨损体积和磨损率分别为

  • Vf=20HL3
    (4)
  • Wf=VfFS
    (5)
  • 式中,R 为摩擦球半径,mm;H 为磨损高度,mm;L 为磨痕直径,mm;F 为法向载荷,N;S为滑动总行程,mm。

  • 2 试验结果与分析

  • 2.1 薄膜表面形貌及表面质量分析

  • 图3 表示了金刚石薄膜的表面形貌。从图3a可以看出,BDUTD薄膜的晶粒之间的晶界非常明显,晶粒生长较饱满,其平均晶粒尺寸为2~3 μm, 晶粒尺寸很明显减小。这表明硼掺杂促进了金刚石晶粒尺寸明显细化,此外,BDUTD薄膜的晶粒形状变得无规律,且这能够有效的增强碳基团的活性,以促进金刚石颗粒二次成核[26-27]。图3b、3c显示了BDETD薄膜及其局部放大图, 图3d、 3e显示了BDGTD薄膜及其局部放大图。从图3b和3d的虚线区域内可以看到,织构区域的金刚石膜的表面粗糙度略有增加,从BDGTD薄膜膜中看出,晶粒具有清晰的棱角和优先的(111) 晶面取向,有效的提高了BDGTD薄膜与基体之间的基膜结合强度,这归因于合理的织构能够进一步增强机械相互作用。图4a~4c分别表示BDUTD、BDETD和BDGTD金刚石薄膜的横截面形貌。三种金刚石薄膜的厚度约为18 μm, 这说明织构对沉积的金刚石薄膜厚度没有影响。

  • 图3 金刚石薄膜的表面SEM形貌

  • Fig.3 SEM morphology of diamond film surface

  • 图4 金刚石薄膜的横截面形貌

  • Fig.4 Cross section morphology of diamond films

  • 图5 显示了不同金刚石薄膜的拉曼光谱及gauss拟合峰。图5a显示了BDUTD薄膜的拉曼光谱,可以清晰地看到在1 332cm-1 附近有一个明显的特征峰的尖峰,该峰说明有金刚石相成分的存在,同时在1 580cm-1 处还检测到了G峰, 这表明金刚石内石墨相存在。对于硼掺杂金刚石薄膜,在1 332cm-1 附近位置存在一个金刚石特征峰, 但是该峰靠近低波数的部分被1 200cm-1 附近的一个宽峰所遮盖,该峰表征的是CVD金刚石薄膜中硼掺杂成分的存在,拉曼光谱中位于1 332cm-1 处的金刚石峰是不对称的,漂移至低频。这是由于硼掺杂引起的Fano现象,这是硼掺杂的一种典型的特征[ 28-29]。图5b和5c显示了BDETD及BDGTD薄膜的拉曼光谱。与图5a相比可以看出,在1 580cm-1 处的宽G峰呈现明显地降低趋势,这是因为织构促进了金刚石薄膜的生长,这说明合理的织构形状可以改善金刚石薄的质量。

  • 图5 金刚石薄膜的拉曼光谱图

  • Fig.5 Raman spectra of diamond films

  • 2.2 金刚石薄膜摩擦性能分析

  • 图6 显示了BDUTD、BDETD、BDGTD薄膜刀具在水润滑条件下与GCr15钢球对摩时的摩擦因数曲线随时间的变化。从图6可以观察到,在水润滑条件下金刚石薄膜摩擦状态在趋于稳定时,不同金刚石薄膜的平均摩擦因数是不同的, 即COF(BDUTD)> COF(BDETD)>COF(BDGTD)。其中, BDGTD薄膜的摩擦因数最小。这可能是由于表面织构的形状越合理,且织构收集磨屑的能力越强,表面织构的自润滑能力就越强。因此,可以利用合理的织构形状有效地减小摩擦。 BDETD薄膜呈现出与BDGTD薄膜相似的摩擦因数曲线。这是由于金刚石薄膜与摩擦球对摩时,润滑液能够利用表面织构顺利的进入到对摩接触面形成了润滑膜并充分起到了润滑的作用,从而有效地减小摩擦因数。图6b为图6a在摩擦200s之前的局部放大图,从图6中可以看出,三种金刚石薄膜具有相似的摩擦因数变化趋势。摩擦曲线状态大体可分为三个阶段,首先, 在摩擦过程的初始阶段经历较高的尖峰之后,摩擦因数(COF) 迅速下降到较低的值,即初始阶段Ⅰ。这是因为金刚石薄膜在GCr15轴承钢球上进行往复直线运动时,摩擦副表面上的微凸起的机械锁合效应以及锋利的(111)面金刚石颗粒尖端的犁削效应[30-31]。其次,摩擦因数逐渐有轻微的上升趋势, 即磨合阶段Ⅱ。这是由于在摩擦过程中,这些突出的金刚石颗粒首先被磨碎,并形成转移膜。从图6b可以看出,BDUTD薄膜的磨合速率更快,进入到动态稳定状态更早,而其他两种硼掺杂金刚石薄膜磨合速率较缓,进入到动态稳定状态较晚。最后,经过一定的磨合期后,摩擦副的表面相互作用趋于稳定, 摩擦因数进入动态稳定状态Ⅲ[32-33]。对于摩擦因数达到动态稳定阶段主要原因是金刚石接触表面上的大多数突出金刚石颗粒都被磨平整了,因此仅有一部分薄膜区域参与摩擦试验,这对COF的变化影响很小。

  • 图6 金刚石薄膜在水润滑条件下的摩擦因数曲线

  • Fig.6 Friction coefficient curve of diamond film under water lubrication condition

  • 图7 显示了三种金刚石薄膜与GCr15钢球对摩时的平均-最大摩擦因数和磨损量-对应球的磨损量。从图7中可以看出,三种金刚石薄膜的最大摩擦因数分别为0.175 12、0.164 8和0.168 83。三种金刚石薄膜的平均摩擦因数分别为0.13、0.124、 0.123。 BDUTD薄膜表现出最大的平均摩擦因数, 其次是BDETD薄膜,而BDGTD薄膜显示出最低的平均摩擦因数,这可能是由于表面织构的形状越合理,并且织构收集磨屑的能力越强,表面织构的自润滑能力就越好。 BDUTD薄膜的磨损量及其对应摩擦钢球磨损体积表现出最大磨损, 其值分别为0.573 7mm 3 和0.050 6mm 3。这是因BDUTD薄膜的耐磨性能较差, 摩擦钢球与金刚石对摩时, BDUTD薄膜不断被磨损,并不断出现新的摩擦面。其中BDGTD薄膜的磨损量及摩擦钢球的磨损体积最小,其值分别为0.333 1mm 3 和0.024 6mm 3。通过比较磨损量可以看出,润滑液通过合理的表面织构进入到接触面进行有效的润滑,从而提高金刚石薄膜的摩擦性能。

  • 图7 金刚石薄膜及对应钢球的磨损量

  • Fig.7 Wear loss of diamond film and corresponding steel ball

  • 在水润滑条件下三种金刚石薄膜及对应球的磨损率如图8所示。从图8可以看出,金刚石薄膜及对摩钢球磨损率最大的是BDUTD薄膜, 其次是BDETD薄膜,磨损率最低的是BDGTD薄膜,其磨损率分别为3.19×10-7 mm 3/(N·m)、2.35×10-7 mm 3/(N·m) 和1.85×10-7mm 3/(N·m)。同时与金刚石薄膜对应的摩擦钢球的磨损率,最大是BDUTD薄膜对应的摩擦钢球,其次是BDETD薄膜对应的摩擦钢球,最后是BDGTD薄膜对应的摩擦钢球,其磨损率分别为2.81 × 10-8 mm 3/( N·m)、 1.88 × 10-8 mm 3/(N·m)以及1.37×10-8 mm 3/(N·m)。从磨损率可以看出,BDUTD薄膜的基膜结合强度以及耐磨性能最差,其次是BDETD薄膜,BDGTD薄膜的基膜结合强度以及耐磨性能最好,这说明了合理的织构形状可以提高薄膜的耐磨性能。

  • 图8 水润滑条件下的金刚石薄膜及对应球的磨损率

  • Fig.8 Wear rates of diamond films and corresponding balls under water lubrication

  • 2.3 磨损形貌分析

  • 2.3.1 摩擦钢球磨损形貌分析

  • 图9 所示为不同金刚石薄膜对应的钢球的磨损直径。从图9以看出,BDUTD薄膜对应的钢球表现出最大的磨损直径,其磨损直径达到了1 506 μm。这是由于尖锐的(111)面取向的金刚石晶粒与摩擦钢球之间形成了较强的机械锁合效应,润滑液润滑作用相较于机械作用较弱,因此,摩擦钢球磨损直径也较大。与另外两种薄膜相比,BDGTD薄膜对应的摩擦钢球样品显示出最小的磨损直径,其磨损直径为1 254 μm。这是由于表面织构能够促进润滑液进入摩擦接触面,改善接触状态,使得接触面得到充分润滑,并且表面织构能够有效的收集磨屑,具有较强的润滑能力。 BDGTD薄膜对应的摩擦球的磨损直径比BDETD薄膜对应的摩擦钢球的磨损直径小,这充分说明合理的表面织构形状能够提高基膜结合强度,改善摩擦性能。

  • 2.3.2 金刚石薄膜磨损形貌分析

  • 图10 所示为三种金刚石薄膜与GCr15钢球对摩后在水润滑条件下的磨损形貌及EDX分析。从图10a中BDUTD薄膜的磨损表面黏附有少量团簇状的磨屑,并且有少量破裂的金刚石晶粒。对于图10c中BDGTD薄膜的表面织构沟槽中磨屑减少了,金刚石晶粒几乎没有出现磨损。这是由于润滑液进入摩擦接触面进行润滑,使得沟槽织构中的磨屑被收集并带出。因此,BDGTD薄膜的磨损性能较其他金刚石薄膜要好。这由于沟槽织构的合理形状,自润滑能力更强,磨损情况最轻。从图10中的EDX分析可以看出,三种金刚石薄膜的表面残留物主要成分为Fe元素和O元素,还可以看到有少量的C元素、Gr元素以及Si元素的存在。 Fe元素的存在充分说明了GCr15钢球被大量的磨掉并转移到了金刚石薄膜表面上,并形成了转移膜。 Fe的成分含量说明了薄膜以及所对应的摩擦钢球的磨损程度不同。

  • 图9 金刚石薄膜对应球的磨损形貌

  • Fig.9 Wear morphology of the diamond film corresponding to the ball

  • 图10 金刚石薄膜在水润滑条件下磨损表面形貌SEM及其EDX图谱

  • Fig.10 SEM and EDX spectrum of worn surface of diamond film under water lubrication condition

  • 3 结论

  • (1) 三种金刚石薄膜在水润滑条件下的摩擦因数曲线表现出相似趋势, 从摩擦曲线可以看出, BDUTD薄膜的摩擦因数最大,其次是BDETD薄膜, BDGTD薄膜表现出最小的摩擦因数。

  • (2) 薄膜及对摩钢球磨损率最大的是BDUTD薄膜,其次是BDETD薄膜,磨损率最低的是BDGTD薄膜,即BDUTD薄膜的基膜结合强度以及耐磨性能最差,BDGTD薄膜的基膜结合强度以及耐磨性能最好,这充分说明合理的表面织构形状能够提高基膜结合强度,改善摩擦性能。

  • (3) 从磨损形貌来看,水润滑条件下的BDUTD薄膜的磨损表面黏附有少量团簇状的磨屑,并且有少量破裂的金刚石晶粒的出现。 BDGTD薄膜的表面织构沟槽中有少量磨屑,金刚石晶粒几乎没有出现磨损。

  • 参考文献

    • [1] 孙玉晶,孙杰,李剑峰.钛合金铣削加工刀具磨损有限元预测分析[J].机械工程学报,2016,52(5):193-201.SUN Yujing,SUN Jie,LI Jianfeng.Finite element analysis on prediction of tool wear in milling titanium [J].Chinese Journal of Mechanical Engineering,2016,52(5):193-201.

    • [2] 计伟,刘献礼,孙轼龙.PCBN 刀具最新发展及应用 [J].航空制造技术,2012(14):77-82.JI Wei,LIU Xianli,SUN Shilong.Current development and application of PCBN cutting tool[J].Aeronautical Manufacturing Technology,2012(14):77-82.

    • [3] 薛宏国.高性能复杂形状金刚石薄膜涂层刀具的制备与切削试验研究[D].上海:上海交通大学,2007.XUE Hongguo.Research on deposition of high quality diamond film on cutting tools with complex shape and their cutting performance[D].Shanghai:Shanghai Jiao Tong University,2007.

    • [4] ZHANG J G,WANG X C,SHEN B,et al.Effect of boron and silicon doping on improving the cutting performance of CVD diamond coated cutting tools in machining CFRP[J].International Journal of Refractory Metalsand Hard Materials,2013,41.

    • [5] 邓福铭,陈立,刘畅,等.微米、纳米及微/纳米复合金刚石涂层的切削性能研究[J].金刚石与磨料磨具工程,2015,35(4):1-5,10.DENG Fuming,CHEN Li,LIU Chang,et al.Study on the cutting properties of micro-nano-and micro/nano diamond coatings[J].Diamond & Abrasives Engineering,2015,35(4):1-5,10.

    • [6] 杨小璠,李友生,李凌祥,等.CVD 金刚石涂层工艺对硬质合金立铣刀铣削CFRP性能的影响[J].金刚石与磨料磨具工程,2018,38(2):37-41.YANG Xiaofan,LI Yousheng,LI Lingxiao,et al.Infiuence of CVD diamond coating process on performance of carbide end mill for cutting CFRP [J].Diamond & Abrasives Engineering,2018,38(2):37-41.

    • [7] CHEN L X,LIU Z Q,SHEN Q.Enhancing tribological performance by anodizing micro-textured surfaces with nano-MoS2 coatings prepared on aluminum-silicon alloys [J].Tribology International,2018,122:84-95.

    • [8] GAJRANI K K,SURESH S,SANKAR M R.Environmental friendly hard machining performance of uncoated and MoS2 coated mechanical micro-textured tungsten carbide cutting tools[J].Tribology International,2018,125:141-155.

    • [9] SINGH T,DVIVEDI A.On performance evaluation of textured tools during micro-channeling with ECDM[J].Journal of Manufacturing Processes,2018,32:699-713.

    • [10] MARCHETTO D,ROTA A,CALABRI L,et al.AFM investigation of tribological properties of nano-patterned silicon surface[J].Wear,2007,265(5):577-582.

    • [11] SUNG I H,LEE H S,KIM D E.Effect of surface topography on the frictional behavior at the micro/nanoscale[J].Wear,2003,254(10):1019-1031.

    • [12] LI J Q.Surface texture and its influence on tribological properties[J].Lubrication Engineering,2009,34(2):94-97,103.

    • [13] 张克栋,邓建新,姜超,等.微纳织构涂层刀具研究进展[J].航空制造技术,2015(6):38-42.ZHANG Kedong,DENG Jianxian,JIANG Chao,et al.Development of micro/nano-textured coated cutting tool [J].Aeronautical Manufacturing Technology,2015(6):38-42.

    • [14] 孙加林,周咏辉,邓建新.织构化涂层刀具研究进展 [J].工具技术,2015,49(7):3-7.SUN Jialin,ZHOU Yonghui,DENG Jianxin.Research on textured coating tool[J].Journal of Tools and Technology,2015,49(7):3-7.

    • [15] 唐晓龙,徐锋,徐俊华,等.掺硼金刚石/硬质合金膜基结合和摩擦磨损性能的研究[J].功能材料,2016,47(3):3181-3185.TANG Xiaolong,XU Feng,XU Junhua,et al.Adesive and tribological properties of born-doped diamond films on cemented carbide [J].Journal Function Material,2016,47(3):3181-3185.

    • [16] 许青波,王传新,王涛,等.硼掺杂金刚石薄膜的制备和性能研究[J].金刚石与磨料磨具工程,2018,38(3):11-15,20.XU Qingbo,WANG Chuanxin,WANG Tao,et al.Preparation and properties of boron doped diamond films [J].Diamond & Abrasives,2018,38(3):11-15,20.

    • [17] 王明政,王成彪,康嘉杰,等.激光表面织构形状参数对钛合金摩擦学性能的影响[J].中国表面工程,2017,30(4):71-77.WANG Mingzheng,WANG Chengbiao,KANG Jiajie,et al.Effects of shape parameters of laser surface texture on tribological performance of titanium alloy[J].China Surface Engineering,2017,30(4):71-77.

    • [18] WANG Q W,YANG Y,YAO P,et al.Friction and cutting characteristics of micro-textured diamond tools fabricated with femtosecond laser[J].Tribology International,2021,154:106720.

    • [19] 张贵梁,邓建新,葛栋良,等.硬质合金表面正弦微织构对其摩擦磨损性能的影响的研究[J].工具技术,2018,52(1):1-12.ZHANG Guiliang,DENG Jianxin,GE Dongliang,et al.Effect of sine-type surface macrotexture on tribological property of carbide [J].Tool Engineering,2018,52(1):1-12.

    • [20] ZHANG Z,LU W Z,LIU W,et al.Friction-reducing effect and damage mechanism of laser micro-texture on diamond films during friction[J].Modern Physics Letters B,2019,33(24):1950283.

    • [21] CHEN S C,QIAN G C,YANG L.Precise control of surface texture on carbon film by ion etching through filter:Optimization of texture size for improving tribological behavior[J].Surface and Coatings Technology,2019,362:105-112.

    • [22] 常秋英,齐烨,王斌,等.激光表面织构对45钢干摩擦性能的影响[J].机械工程学报,2017,53(3):148-154.CHANG Qiuying,QI Ye,WANG Bin,et al.Tribological influence of laser surface textures on 45 steel under dry sliding [J].Journal of Mechanical Engineering,2017,53(3):148-154.

    • [23] 张克栋,邓建新.基体表面织构化TiAlN涂层刀具的制备与应用的基础研究[J].机械工程学报,2019,55(8):105.ZAHNG Kedong,DENG Jianxin,Study on fabrication and application of TiALN coated tools with textured substrate surface [J].Journal of mechanical engineering,2019,55(8):105.

    • [24] GAJRANI K K,SANKAR M R.State of the art on micro to nano textured cutting tools[J].Materials Today:Proceedings,2017,4(2):3776-3785.

    • [25] SOMMER M,SMITH F.Effect of oxygen on filament activity in diamond chemical vapor deposition [J].J.Vac.Sci.Technol.A.Vacuum,Surfaces,and Films,1991,9:1134-1139.

    • [26] TERASHIMA C,ARIHARA K,OKAZAKI S,et al.Fabrication of vertically aligned diamond whiskers from highly boron-doped diamond by oxygen plasma etching [J].ACS Applied Materials & Interfaces,2011,3:177-182.

    • [27] ZOU Y,LI Z,YANG H.Microstructure and field electron emission properties of boron doped diamond films [J].Surface Engineering,2011,27:294-299.

    • [28] KUMAR D,CHANDRAN M,RAMACHANDRA R M.Effect of boron doping on first-order Raman scattering in superconducting boron doped diamond films [J].Applied Physics Letters,2017,110:191602.

    • [29] 廖克俊,王万录,张振刚,等.热灯丝CVD金刚石膜硼掺杂效应研究 [J].物理学报,1996(10):173-178.LIAO Kejie,WANG Wanlu,ZHANG Zhengang,et al.Study of boron-doped diamond films by hot filament CVD [J].Acta Physica Sinica,1996(10):173-178.

    • [30] CABRAL G,GABLER J,LINDNER J,et al.A study of diamond film deposition on WC-Co inserts for graphitemachining:Effectiveness of SiC interlayers prepared by HFCVD[J].Diamond & Related Materials,2008,17:1008-1014.

    • [31] HU J,CHOU Y K,THOMPSON R G.Nanocrystalline diamond coating tools for machining high-strength Al alloys[J].International Journal of Refractory Metals and Hard Materials,2007,26(3).

    • [32] ABREU C S,AMARAL M,F J OLIVEIRA,et al.HFCVD nanocrystalline diamond coatings for tribo-applica tions in the presence of water[J].Diamond & Related Materials,2008,18(2).

    • [33] CHEN S L,SHEN B,SUN F H.The influence of normal load on the tribological performance of electrophoretic deposition prepared graphene coating on micro-crystalline diamond surface [J].Diamond & Related Materials,2017,76:50-57.

  • 参考文献

    • [1] 孙玉晶,孙杰,李剑峰.钛合金铣削加工刀具磨损有限元预测分析[J].机械工程学报,2016,52(5):193-201.SUN Yujing,SUN Jie,LI Jianfeng.Finite element analysis on prediction of tool wear in milling titanium [J].Chinese Journal of Mechanical Engineering,2016,52(5):193-201.

    • [2] 计伟,刘献礼,孙轼龙.PCBN 刀具最新发展及应用 [J].航空制造技术,2012(14):77-82.JI Wei,LIU Xianli,SUN Shilong.Current development and application of PCBN cutting tool[J].Aeronautical Manufacturing Technology,2012(14):77-82.

    • [3] 薛宏国.高性能复杂形状金刚石薄膜涂层刀具的制备与切削试验研究[D].上海:上海交通大学,2007.XUE Hongguo.Research on deposition of high quality diamond film on cutting tools with complex shape and their cutting performance[D].Shanghai:Shanghai Jiao Tong University,2007.

    • [4] ZHANG J G,WANG X C,SHEN B,et al.Effect of boron and silicon doping on improving the cutting performance of CVD diamond coated cutting tools in machining CFRP[J].International Journal of Refractory Metalsand Hard Materials,2013,41.

    • [5] 邓福铭,陈立,刘畅,等.微米、纳米及微/纳米复合金刚石涂层的切削性能研究[J].金刚石与磨料磨具工程,2015,35(4):1-5,10.DENG Fuming,CHEN Li,LIU Chang,et al.Study on the cutting properties of micro-nano-and micro/nano diamond coatings[J].Diamond & Abrasives Engineering,2015,35(4):1-5,10.

    • [6] 杨小璠,李友生,李凌祥,等.CVD 金刚石涂层工艺对硬质合金立铣刀铣削CFRP性能的影响[J].金刚石与磨料磨具工程,2018,38(2):37-41.YANG Xiaofan,LI Yousheng,LI Lingxiao,et al.Infiuence of CVD diamond coating process on performance of carbide end mill for cutting CFRP [J].Diamond & Abrasives Engineering,2018,38(2):37-41.

    • [7] CHEN L X,LIU Z Q,SHEN Q.Enhancing tribological performance by anodizing micro-textured surfaces with nano-MoS2 coatings prepared on aluminum-silicon alloys [J].Tribology International,2018,122:84-95.

    • [8] GAJRANI K K,SURESH S,SANKAR M R.Environmental friendly hard machining performance of uncoated and MoS2 coated mechanical micro-textured tungsten carbide cutting tools[J].Tribology International,2018,125:141-155.

    • [9] SINGH T,DVIVEDI A.On performance evaluation of textured tools during micro-channeling with ECDM[J].Journal of Manufacturing Processes,2018,32:699-713.

    • [10] MARCHETTO D,ROTA A,CALABRI L,et al.AFM investigation of tribological properties of nano-patterned silicon surface[J].Wear,2007,265(5):577-582.

    • [11] SUNG I H,LEE H S,KIM D E.Effect of surface topography on the frictional behavior at the micro/nanoscale[J].Wear,2003,254(10):1019-1031.

    • [12] LI J Q.Surface texture and its influence on tribological properties[J].Lubrication Engineering,2009,34(2):94-97,103.

    • [13] 张克栋,邓建新,姜超,等.微纳织构涂层刀具研究进展[J].航空制造技术,2015(6):38-42.ZHANG Kedong,DENG Jianxian,JIANG Chao,et al.Development of micro/nano-textured coated cutting tool [J].Aeronautical Manufacturing Technology,2015(6):38-42.

    • [14] 孙加林,周咏辉,邓建新.织构化涂层刀具研究进展 [J].工具技术,2015,49(7):3-7.SUN Jialin,ZHOU Yonghui,DENG Jianxin.Research on textured coating tool[J].Journal of Tools and Technology,2015,49(7):3-7.

    • [15] 唐晓龙,徐锋,徐俊华,等.掺硼金刚石/硬质合金膜基结合和摩擦磨损性能的研究[J].功能材料,2016,47(3):3181-3185.TANG Xiaolong,XU Feng,XU Junhua,et al.Adesive and tribological properties of born-doped diamond films on cemented carbide [J].Journal Function Material,2016,47(3):3181-3185.

    • [16] 许青波,王传新,王涛,等.硼掺杂金刚石薄膜的制备和性能研究[J].金刚石与磨料磨具工程,2018,38(3):11-15,20.XU Qingbo,WANG Chuanxin,WANG Tao,et al.Preparation and properties of boron doped diamond films [J].Diamond & Abrasives,2018,38(3):11-15,20.

    • [17] 王明政,王成彪,康嘉杰,等.激光表面织构形状参数对钛合金摩擦学性能的影响[J].中国表面工程,2017,30(4):71-77.WANG Mingzheng,WANG Chengbiao,KANG Jiajie,et al.Effects of shape parameters of laser surface texture on tribological performance of titanium alloy[J].China Surface Engineering,2017,30(4):71-77.

    • [18] WANG Q W,YANG Y,YAO P,et al.Friction and cutting characteristics of micro-textured diamond tools fabricated with femtosecond laser[J].Tribology International,2021,154:106720.

    • [19] 张贵梁,邓建新,葛栋良,等.硬质合金表面正弦微织构对其摩擦磨损性能的影响的研究[J].工具技术,2018,52(1):1-12.ZHANG Guiliang,DENG Jianxin,GE Dongliang,et al.Effect of sine-type surface macrotexture on tribological property of carbide [J].Tool Engineering,2018,52(1):1-12.

    • [20] ZHANG Z,LU W Z,LIU W,et al.Friction-reducing effect and damage mechanism of laser micro-texture on diamond films during friction[J].Modern Physics Letters B,2019,33(24):1950283.

    • [21] CHEN S C,QIAN G C,YANG L.Precise control of surface texture on carbon film by ion etching through filter:Optimization of texture size for improving tribological behavior[J].Surface and Coatings Technology,2019,362:105-112.

    • [22] 常秋英,齐烨,王斌,等.激光表面织构对45钢干摩擦性能的影响[J].机械工程学报,2017,53(3):148-154.CHANG Qiuying,QI Ye,WANG Bin,et al.Tribological influence of laser surface textures on 45 steel under dry sliding [J].Journal of Mechanical Engineering,2017,53(3):148-154.

    • [23] 张克栋,邓建新.基体表面织构化TiAlN涂层刀具的制备与应用的基础研究[J].机械工程学报,2019,55(8):105.ZAHNG Kedong,DENG Jianxin,Study on fabrication and application of TiALN coated tools with textured substrate surface [J].Journal of mechanical engineering,2019,55(8):105.

    • [24] GAJRANI K K,SANKAR M R.State of the art on micro to nano textured cutting tools[J].Materials Today:Proceedings,2017,4(2):3776-3785.

    • [25] SOMMER M,SMITH F.Effect of oxygen on filament activity in diamond chemical vapor deposition [J].J.Vac.Sci.Technol.A.Vacuum,Surfaces,and Films,1991,9:1134-1139.

    • [26] TERASHIMA C,ARIHARA K,OKAZAKI S,et al.Fabrication of vertically aligned diamond whiskers from highly boron-doped diamond by oxygen plasma etching [J].ACS Applied Materials & Interfaces,2011,3:177-182.

    • [27] ZOU Y,LI Z,YANG H.Microstructure and field electron emission properties of boron doped diamond films [J].Surface Engineering,2011,27:294-299.

    • [28] KUMAR D,CHANDRAN M,RAMACHANDRA R M.Effect of boron doping on first-order Raman scattering in superconducting boron doped diamond films [J].Applied Physics Letters,2017,110:191602.

    • [29] 廖克俊,王万录,张振刚,等.热灯丝CVD金刚石膜硼掺杂效应研究 [J].物理学报,1996(10):173-178.LIAO Kejie,WANG Wanlu,ZHANG Zhengang,et al.Study of boron-doped diamond films by hot filament CVD [J].Acta Physica Sinica,1996(10):173-178.

    • [30] CABRAL G,GABLER J,LINDNER J,et al.A study of diamond film deposition on WC-Co inserts for graphitemachining:Effectiveness of SiC interlayers prepared by HFCVD[J].Diamond & Related Materials,2008,17:1008-1014.

    • [31] HU J,CHOU Y K,THOMPSON R G.Nanocrystalline diamond coating tools for machining high-strength Al alloys[J].International Journal of Refractory Metals and Hard Materials,2007,26(3).

    • [32] ABREU C S,AMARAL M,F J OLIVEIRA,et al.HFCVD nanocrystalline diamond coatings for tribo-applica tions in the presence of water[J].Diamond & Related Materials,2008,18(2).

    • [33] CHEN S L,SHEN B,SUN F H.The influence of normal load on the tribological performance of electrophoretic deposition prepared graphene coating on micro-crystalline diamond surface [J].Diamond & Related Materials,2017,76:50-57.

  • 手机扫一扫看