- 工程前沿 -
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

王潇(1993—),女(汉),助教,硕士;研究方向:电子与激光技术;E-mail:501785733@qq.com

中图分类号:TG174

文献标识码:A

文章编号:1007-9289(2020)05-0083-07

DOI:10.11933/j.issn.1007-9289.20190308005

参考文献 1
高旸.激光技术应用现状与分析[J].物理通报,2007(11):50-52.Gao Y.Present situation and analysis of laser technology ap-plication[J].Physics Bulletin,2007(11):50-52(in Chi-nese).
参考文献 2
Xue Y,Qiao Y,Liu J,et al.SiOC ceramic coating prepared by laser pyrolysis liquid polydimethylsiloxane[J].Journal of the Chinese Ceramic Society,2016.
参考文献 3
刘照围,乔玉林,王思捷.脉冲激光清洗的作用机理及清洗表面性能提升研究[J].清洗世界,2019,35(1):1-14.Liu Z W,Qiao Y L,Wang S J.The research of the mecha-nism of the pulse laser cleaning and the improvement of cleaning surface performance[J].Cleaning World,2019,35(1):1-14(in Chinese).
参考文献 4
Liu J,Qiao Y L,Zhang P,et al.Synthesis of SiC ceramics from polysilazane by laser pyrolysis[J].Surface and Coatings Technology,2017,321:491-495.
参考文献 5
Riedel R,Chen I W.Polymer-derived ceramics:40 years of research and innovation in advanced ceramics [M].Ceram-ics Science and Technology Volume 4:Applications.Wiley ‐ VCH Verlag GmbH & Co.KGaA,2013:245-320.
参考文献 6
黄克宁,乔玉林,薛胤昌,等.激光裂解含二茂铁的聚硅氧烷制备 SiOC(Fe)陶瓷涂层研究[J].材料保护,2017(12):5-7.Huang K N,Qiao Y L,Xue Y C,et al.Study on SiOC(Fe)ceramic coatings prepared by laser pyrolysis with ferro-cene polysiloxane[J].Materials Protection,2017(12):5-7(in Chinese).
参考文献 7
Jiang Y,Li J,Huang F,et al.Polymer-derived SiC/B4C/C,nanocomposites:structural evolution and crystallization behavior [J].Journal of the American Ceramic Society,2014,97(1):310-315.
参考文献 8
QIAO Y L,ZHAO J X,XUE Y C,et al.Ceramic coatings prepared by laser pyrolysis of polysiloxane modified by titan-ate[J].Laser Technology,2018.
参考文献 9
宋麦丽,傅利坤.SiC 先驱体聚碳硅烷的应用研究进展 [J].中国材料进展,2013,32(4):243-249.Song M L,Fu L K.Research progress in application of SiC precursor polycarbosilane [J].Materials China,2013,32(4):243-249(in Chinese).
参考文献 10
Rühle M,Evans A G.High toughness ceramics and ceramic composites [J].Progress in Materials Science,1989,33(2):85-167.
参考文献 11
Evans A G.Perspective on the development of high ‐ tough-ness ceramics[J].Journal of the American Ceramic Society,1990,73(2):187-206.
参考文献 12
Rutkowski P,Huebner J,Kata D,et al.Laser initiated Ti 3 SiC 2,powder and coating synthesis[J].Ceramics Interna-tional,2018:S0272884218307090.
参考文献 13
陈少杰,张教强,苏力宏,等.光聚合陶瓷先驱体裂解制备陶瓷涂层及其抗氧化性能[J].材料保护,2010,43(3):4-6.Chen S J,Zhang J Q,Su L H,et al.Preparation and anti-oxidation behavior of ceramic coating prepared by photo cata-lytic pyrolysis of thiol-ene precursor [J].Materials Protec-tion,2010,43(3):4-6(in Chinese).
参考文献 14
QIAO Y L,ZHAO J X,XUE Y C,et al.Effects of laser py-rolysis parameters on ceramization of polydimethylsiloxane [J].Surface Technology,2017.
参考文献 15
赵吉鑫,乔玉林,薛胤昌,等.基于激光裂解含Ti粉聚二甲基硅氧烷的SiTiOC复相陶瓷涂层制备[J].中国激光,2017,44(10):97-103.Zhao J X,Qiao Y L,Xue Y C,et al.Fabrication of SiTiC composite ceramic coating based on laser pyrolysis of Ti-con-taining polydimethylsiloxane[J].Chinese Journal of Lasers,2017,44(10):97-103(in Chinese).
参考文献 16
赵吉鑫,乔玉林,薛胤昌,等.不同形态的铝对激光裂解聚硅氧烷制备SiAlCO陶瓷涂层的影响[J].人工晶体学报,2017,46(9):1869-1874.Zhao J X,Qiao Y L,Xue Y C,et al.Effect of different forms of aluminum on SiAlCO ceramic coating prepared by la-ser pyrolisis polysiloxane[J].Jouranal of synthetic crystals,2017,46(9):1869-1874(in Chinese).
参考文献 17
刘庆辉,许晓静,戈晓岚,等.TC4 钛合金表面激光合金化 Ti-Si-C 涂层的研究[J].稀有金属,2016(6):546-551.Liu Q H,Xu X J,Ge X L,et al.Research on laser alloying Ti-Si-C coating on TC4 titanium alloy[J].Chinese Journal of Rare Metals,2016(6):546-551(in Chinese).
目录contents

    摘要

    复合陶瓷涂层具有良好的抗腐蚀和耐磨性能,因其性能优异、成本较低而在汽车、轮船、电子、建筑等方面得到广泛应用。 为得到具有良好减摩耐磨性能的陶瓷涂层,试验采用钛酸四丁脂和硅烷偶联剂(KH560)制备 Ti-Si 有机膜先驱体,以激光为热源,采用先驱体转换法(PDC 法)制备了复合陶瓷涂层。 研究发现,陶瓷涂层中有机官能团随着激光功率增大不断减少,200 W 与 400 W 激光条件下制备的 Ti-Si 陶瓷涂层化学键类型主要为 Si-O-Si、Ti-O、Si-C 等,先驱体无机化程度显著提高,而在 600 W 和 800 W 激光条件下制备的陶瓷涂层无机化程度更高,无机化程度较低时涂层摩擦因数较小,无机化程度较高时涂层耐磨性较好。 试验表明,按 KH560 和钛酸四丁酯质量比为 1 ∶1. 8,固化温度 80 ℃固化时间 30 min,采用氩气作为保护气体,激光功率为 600 W,激光波长为 980 nm,扫描速率为 14 mm/ s,搭接率为 3%,“1”字形连续激光扫描一次,所制备的陶瓷涂层耐磨性较好,3 N 压力时其磨损主要为磨粒磨损,相对于 45 钢基体减摩 80%以上。

    Abstract

    Composite Ceramic Coatings have good corrosion resistance and wear-resistance property. They are widely used in automobiles, ships, electronics, and buildings because of their excellent performance and low costs. In order to obtain ceramic coatings with good wear-resistance property, the experiment used tetrabutyl titanate and silane coupling agent(KH60) to make Ti-Si organic film precursor, used laser as the heat source and created composite ceramic coating with the use of precursor conversion method (PDC method). The study shows that the organic functional groups of ceramic coatings decrease with the increase in laser power. Under the conditions of 200 W and 400 W lasers, the types of Ti-Si ceramic coating chemical bond are mainly Si-O-Si, Ti-O, and Si-C and the inorganic degree of the precursors is increased significantly. Furthermore, under the conditions of 600 W and 800 W lasers, the ceramic coatings are higher in their inorganic degree. The friction coefficient of the coatings is smaller when the inorganic degree is lower, and the abrasive wear resistance of coatings increases when the inorganic degree is higher. The experiment shows that if the mass ratio between KH560 and tetrabutyl titanate is 1 ∶1. 8, the curing temperature 80 degrees, the curing time 30 minutes, argon the protective gas, the laser power 600 W, the laser wavelength 980 nm, the scan rate 14 mm/ s, the lapping rate three percent, and the continuous laser of the figure“1” method scans it, the wear-re-sistance property of ceramic coatings will become better, and under the pressure of 3N, its wear is mainly abrasive wear. Compared with the 45 steel, the friction achieved a relative decrease of 80%.

  • 0 引言

  • 20 世纪60 年代,激光的理论被用于实际。近30 年以来,激光技术发展迅猛[1]。在当今的工业生产及材料科学领域,激光作为一项新的技术,更是发展的重点。激光具有环保、高效等诸多优点,能量高且集中,易于控制,在激光熔覆、激光清洗等方面已经得到了很好的应用,且具有作为先驱体转化法热源的潜质[2-3]。所以,利用激光裂解先驱体制备陶瓷涂层是一种具备广阔前途的制备陶瓷涂层的新方法。

  • 激光裂解先驱体制备陶瓷涂层的研究已经有了明显的进展,但陶瓷涂层材料体系设计、规模化裂解先驱体工艺控制、陶瓷涂层性能质量控制等方面仍需作进一步研究[4-9]。为提高陶瓷的韧性,1980 年后,陶瓷基复合材料(Ceramic matrix composites,CMCs)的概念被提出并得到了广泛深入地研究[10-11]。在一定条件下,在金属基体表面裂解高聚物得到陶瓷涂层,使金属在原有性能的基础上具备一定的减摩耐磨、抗腐蚀等优良性能[12-14]。赵吉鑫等[15-16] 研究发现,随着激光功率的提高,先驱体的无机化程度更高,在700 W激光功率条件下制备的含Ni复合陶瓷涂层和含Cr复合陶瓷涂层与基体的结合强度较高,摩擦学性能优异。刘庆辉等[17] 研究了激光合金化TiSi-C涂层,所得涂层其耐磨性是Ti合金基体的2.71 倍。

  • 利用钛酸四丁酯和KH560 制备的透明Ti-Si有机膜,具有较好的抗腐蚀性能,但其耐摩擦性能相对较差。利用高能激光为热源在金属表面裂解Ti-Si有机膜制备陶瓷涂层,通过分析涂层表面形貌、物相组成变化等考察对制备的陶瓷涂层的影响,并对其摩擦学性能进行研究。

  • 1 试验

  • 1.1 主要原料

  • γ-缩水甘油氧丙基三甲氧基硅烷为山东优索化工科技有限公司生产,工业级;钛酸四丁酯为北京益利精细化学品有限公司,化学纯;无水乙醇为北京市通广精细化工公司生产,分析纯。

  • 1.2 Ti-Si有机膜陶瓷涂层制备方法

  • 按质量比为1 ∶ 1.8 分别称取一定量KH560 和钛酸四丁酯,将钛酸四丁脂缓慢加入KH560 中并充分混合,然后超声分散10 min,获得有机混合溶液。使用TBJR4000 自动涂布机将制备好的有机混合溶液均匀涂布在金属基材表面,金属基材表面用P1000 的砂纸进行打磨,在无水乙醇中超声清洗5 min,干燥箱干燥5 min处理。并将其置于恒温干燥箱中80℃ 下固化30 min,固化完成后得到表面平整、厚度约为30~50 μm的有机膜。

  • 采用氩气作为保护气体,将试样水平放置, 分别用功率为200 W、400 W、600 W、800 W的激光进行扫描,采用德国DLS-3000C半导体激光器,激光波长为980 nm,扫描速率为14 mm/s,搭接率3%,“1”字形连续激光扫描一次,随后冷却至室温,即可得到表面平整、厚度约为30~50 μm的Ti-Si复合陶瓷涂层。

  • 1.3 Ti-Si有机膜陶瓷涂层表征

  • 利用扫描电子显微镜Nano NanoSEM50 表征Ti-Si有机膜陶瓷涂层表面形貌,利用傅里叶红外光谱仪Bruker Tensor II分析Ti-Si有机膜陶瓷涂层表面化学成分,利用X射线光电子能谱仪KAlpha分析Ti-Si有机膜陶瓷涂层表面结构组成, 利用往复式摩擦磨损测试仪MFT-R4000 表征TiSi有机膜陶瓷涂层摩擦学性能。

  • 2 试验结果及讨论

  • 2.1 Ti-Si有机膜陶瓷涂层表面形貌表征

  • 图1 为利用激光裂解Ti-Si有机膜获得涂层表面的SEM图。

  • 由图1 可见,在激光功率为200 W、400 W时,有机膜表面较平整,相对于低温固化的Ti-Si有机膜并没有明显的变化。当激光功率达到600 W时,涂层表面开始出现颗粒,分散均匀,且在涂层中有出现,推断为Ti-Si有机膜中有机高分子在激光作用下发生裂解,生成了陶瓷物质。当激光功率进一步增强至800 W时,涂层表面出现伴随着较多的裂纹和孔隙,出现大量呈层片状颗粒物质,相对于激光功率600 W时制备的涂层,涂层的质量较差。

  • 图1 不同激光功率下制备的涂层的SEM图

  • Fig.1 SEM images of coatings which are made with different laser power

  • 2.2 Ti-Si有机膜陶瓷涂层傅里叶红外光谱分析

  • 图2 给出了Ti-Si有机膜在不同激光功率下裂解后涂层的红外光谱图。

  • 图2 不同激光功率制备的涂层的红外光谱图

  • Fig.2 Infrared spectra of coatings which are made with different laser power

  • 由图2( a) 分析可见, 图中的特征峰, 在3393 cm-1 和945 cm-1 处的吸收峰为Si-OH特征峰,1103 cm-1 处的吸收峰Si-O-Si特征峰, 906cm-1 处环氧基团特征峰之一,440 cm -1 处为来自于TiO2 的Ti-O的特征吸收峰。从图2( b) 可以看出,3393 cm-1 处的Si-OH特征吸收峰在激光作用下,峰宽逐渐变窄,这是因为随着激光能量注入,Si-OH与金属基体之间的结合程度增加,同时Si-OH互相之间发生缩合反应进而导致Si-OH键减少。而800 W激光功率条件下, 3420 cm-1 处的峰明显降低,推断是在激光的作用下,原有的Si-OH、-CH2-、-CH3 键发生了断裂而生成CO2、H2O等气体小分子;2932 cm-1 处吸收峰的峰强随激光功率的增大明显减小;906 cm-1 处的环氧基团峰强减小,可能是随激光功率增大,环氧基团不断开环,与金属基体形成化学键合。

  • 综上,在经过激光裂解后,涂层中特征峰的峰强有一定程度的降低,这说明Ti-Si有机膜中在向无机化裂解方向转变,随着激光功率逐渐增大,无机化的趋势增强,无机化程度越来越大。

  • 2.3 Ti-Si有机膜陶瓷涂层X射线光电子能谱分析

  • 图3、图4 分别为400 W和600 W激光功率扫描先驱体的XPS解叠图,表1 给出了不同激光功率扫描先驱体的主要存在形式。由此可以大致推断先驱体中物质存在形式以及不同激光功率下扫描后物质的变化过程。

  • 图3 400 W激光功率制备的涂层的XPS解叠图

  • Fig.3 XPS solutions of coatings which are made with 400 W laser power

  • 图4 600 W激光功率制备的涂层的XPS解叠图

  • Fig.4 XPS solutions of coatings which are made with 600 W laser power

  • 表1 不同激光功率制备的涂层各元素的电子结合能以及存在形式

  • Table1 Electronic binding energy and the existence forms of the coatings’ various elements with different laser power

  • 激光功率为200 W和400 W时制备的涂层的解叠图与未经激光扫描的解叠图基本一致,但C-O键峰强降低很明显;到600 W时,解叠图与之前变化不大,但位于较低结合能的Ti-O的峰消失;至800 W时,C-O键的峰强进一步降低,Si元素的解叠图有明显变化,C-O-Si键的峰降低较明显,而Si-O键和C-Si键的峰则相对更高,原因可能是在较高的激光功率下,键能较高的C-O-Si发生断裂,生成小分子物质以及部分SiC和Si的氧化物,钛酸四丁酯分解生成小分子TiO2

  • 2.4 Ti-Si有机膜陶瓷涂层摩擦学性能

  • 2.4.1 摩擦学性能评价

  • 图5 给出了45 钢基体在不同激光功率下制备的陶瓷涂层的平均摩擦因数与磨损体积。

  • 图5 不同激光功率制备的涂层的摩擦因数和磨损体积

  • Fig.5 Friction coefficient and the wear volume of coatings which are made with different laser power

  • 分析图5(a),0 W、200 W和400 W激光功率下制备的陶瓷涂层,其摩擦因数均低于同摩擦条件下45 钢基体的摩擦因数。当激光功率进一步增加至600 W时,激光裂解后获得的涂层的摩擦因数在一定条件下略高于45 钢基体摩擦因数。 800 W时摩擦因数更大,其原因是由于在该功率下,Ti-Si有机膜在激光作用下陶瓷化获得陶瓷涂层增加,生成较多如SiC、SiO2 等非晶陶瓷相,因而摩擦时增大了摩擦因数。不同激光功率裂解Ti-Si有机膜制备的陶瓷涂层,其磨损体积总体上比45 钢的磨损体积小,特殊情况下减摩耐磨性能优异,如600 W时制备的陶瓷涂层在3 N载荷下的磨损体积比钢基体磨损体积降低约81.05%。

  • 2.4.2 表面磨痕分析

  • 图6 和图7 分别为400 W和600 W激光功率制备的陶瓷涂层不同载荷下的磨痕形貌图。

  • 图6 400 W激光功率裂解的涂层在不同载荷下的表面磨痕SEM形貌

  • Fig.6 SEM images of coatings made by laser power with 400 W at different load

  • 图7 600 W激光功率裂解的涂层在不同载荷下的表面磨痕SEM形貌

  • Fig.7 SEM images of coatings made by laser power with 600 W at different load

  • 从图6 可以看出:载荷为1 N和3N时,涂层的磨痕表面出现一些较浅的划痕以及大量的裂纹,并伴随着小范围剥落出现,在3 N时尤为明显,可以判断在较低载荷时主要是发生了黏着磨损和磨粒磨损;当载荷增加至5 N时,可观察到典型的裂纹、剥落以及断裂,这些剥落和断裂会显著影响涂层的摩擦学性能,对应图5 中激光功率400 W时摩擦因数折线图,其摩擦因数在5 N时有明显的上升;当载荷为7 N时,可以发现之前的层片状剥落等有所恢复,因为较高载荷下产生的磨粒在摩擦的过程中填补了裂纹与剥落所产生的坑,其摩擦机理主要为黏着磨损。

  • 从图7 可以看出:载荷为1 N和3 N时,磨痕表面出现明显划痕以及裂纹和剥落,可见其磨损机理主要为磨粒磨损;当载荷为5 N和7 N时,磨痕表面出现片层剥落以及磨屑,其磨损机理主要为黏着磨损。

  • 3 结论

  • (1) 激光裂解Ti-Si有机膜制备陶瓷涂层时,随着激光功率增大,特征官能团的特征峰峰强逐渐降低,无机陶瓷化逐渐增强,在激光功率较低功率下,化学键键能相对较低的C-O、C-C和C-Si等受热断裂,生成CO2、CH4 等小分子气体; 在激光功率增大后,Si-O键由于较高的键能而十分稳定,在涂层中转变为稳定的SiO2,较低结合能的高分子Ti-O键转变为稳定的陶瓷相Ti-O键,生成小分子TiO2

  • (2) 激光裂解Ti-Si有机膜得到的陶瓷涂层的摩擦因数和磨损体积与激光功率有很大关系。较低激光功率制备的陶瓷涂层摩擦因数较低,较高激光功率制备的陶瓷涂层的耐磨性较好。

  • (3) 在激光功率为600 W时制备的Ti-Si陶瓷涂层陶瓷化程度较高且表面平整均匀,减摩耐磨性能优异。原因是激光裂解Ti-Si有机膜制备陶瓷涂层时生成的小分子TiO2和SiO2 等陶瓷相填补了陶瓷涂层的孔隙,摩擦磨损时小分子陶瓷相生成磨粒起到了减摩耐磨的效果。

  • 参考文献

    • [1] 高旸.激光技术应用现状与分析[J].物理通报,2007(11):50-52.Gao Y.Present situation and analysis of laser technology ap-plication[J].Physics Bulletin,2007(11):50-52(in Chi-nese).

    • [2] Xue Y,Qiao Y,Liu J,et al.SiOC ceramic coating prepared by laser pyrolysis liquid polydimethylsiloxane[J].Journal of the Chinese Ceramic Society,2016.

    • [3] 刘照围,乔玉林,王思捷.脉冲激光清洗的作用机理及清洗表面性能提升研究[J].清洗世界,2019,35(1):1-14.Liu Z W,Qiao Y L,Wang S J.The research of the mecha-nism of the pulse laser cleaning and the improvement of cleaning surface performance[J].Cleaning World,2019,35(1):1-14(in Chinese).

    • [4] Liu J,Qiao Y L,Zhang P,et al.Synthesis of SiC ceramics from polysilazane by laser pyrolysis[J].Surface and Coatings Technology,2017,321:491-495.

    • [5] Riedel R,Chen I W.Polymer-derived ceramics:40 years of research and innovation in advanced ceramics [M].Ceram-ics Science and Technology Volume 4:Applications.Wiley ‐ VCH Verlag GmbH & Co.KGaA,2013:245-320.

    • [6] 黄克宁,乔玉林,薛胤昌,等.激光裂解含二茂铁的聚硅氧烷制备 SiOC(Fe)陶瓷涂层研究[J].材料保护,2017(12):5-7.Huang K N,Qiao Y L,Xue Y C,et al.Study on SiOC(Fe)ceramic coatings prepared by laser pyrolysis with ferro-cene polysiloxane[J].Materials Protection,2017(12):5-7(in Chinese).

    • [7] Jiang Y,Li J,Huang F,et al.Polymer-derived SiC/B4C/C,nanocomposites:structural evolution and crystallization behavior [J].Journal of the American Ceramic Society,2014,97(1):310-315.

    • [8] QIAO Y L,ZHAO J X,XUE Y C,et al.Ceramic coatings prepared by laser pyrolysis of polysiloxane modified by titan-ate[J].Laser Technology,2018.

    • [9] 宋麦丽,傅利坤.SiC 先驱体聚碳硅烷的应用研究进展 [J].中国材料进展,2013,32(4):243-249.Song M L,Fu L K.Research progress in application of SiC precursor polycarbosilane [J].Materials China,2013,32(4):243-249(in Chinese).

    • [10] Rühle M,Evans A G.High toughness ceramics and ceramic composites [J].Progress in Materials Science,1989,33(2):85-167.

    • [11] Evans A G.Perspective on the development of high ‐ tough-ness ceramics[J].Journal of the American Ceramic Society,1990,73(2):187-206.

    • [12] Rutkowski P,Huebner J,Kata D,et al.Laser initiated Ti 3 SiC 2,powder and coating synthesis[J].Ceramics Interna-tional,2018:S0272884218307090.

    • [13] 陈少杰,张教强,苏力宏,等.光聚合陶瓷先驱体裂解制备陶瓷涂层及其抗氧化性能[J].材料保护,2010,43(3):4-6.Chen S J,Zhang J Q,Su L H,et al.Preparation and anti-oxidation behavior of ceramic coating prepared by photo cata-lytic pyrolysis of thiol-ene precursor [J].Materials Protec-tion,2010,43(3):4-6(in Chinese).

    • [14] QIAO Y L,ZHAO J X,XUE Y C,et al.Effects of laser py-rolysis parameters on ceramization of polydimethylsiloxane [J].Surface Technology,2017.

    • [15] 赵吉鑫,乔玉林,薛胤昌,等.基于激光裂解含Ti粉聚二甲基硅氧烷的SiTiOC复相陶瓷涂层制备[J].中国激光,2017,44(10):97-103.Zhao J X,Qiao Y L,Xue Y C,et al.Fabrication of SiTiC composite ceramic coating based on laser pyrolysis of Ti-con-taining polydimethylsiloxane[J].Chinese Journal of Lasers,2017,44(10):97-103(in Chinese).

    • [16] 赵吉鑫,乔玉林,薛胤昌,等.不同形态的铝对激光裂解聚硅氧烷制备SiAlCO陶瓷涂层的影响[J].人工晶体学报,2017,46(9):1869-1874.Zhao J X,Qiao Y L,Xue Y C,et al.Effect of different forms of aluminum on SiAlCO ceramic coating prepared by la-ser pyrolisis polysiloxane[J].Jouranal of synthetic crystals,2017,46(9):1869-1874(in Chinese).

    • [17] 刘庆辉,许晓静,戈晓岚,等.TC4 钛合金表面激光合金化 Ti-Si-C 涂层的研究[J].稀有金属,2016(6):546-551.Liu Q H,Xu X J,Ge X L,et al.Research on laser alloying Ti-Si-C coating on TC4 titanium alloy[J].Chinese Journal of Rare Metals,2016(6):546-551(in Chinese).

  • 参考文献

    • [1] 高旸.激光技术应用现状与分析[J].物理通报,2007(11):50-52.Gao Y.Present situation and analysis of laser technology ap-plication[J].Physics Bulletin,2007(11):50-52(in Chi-nese).

    • [2] Xue Y,Qiao Y,Liu J,et al.SiOC ceramic coating prepared by laser pyrolysis liquid polydimethylsiloxane[J].Journal of the Chinese Ceramic Society,2016.

    • [3] 刘照围,乔玉林,王思捷.脉冲激光清洗的作用机理及清洗表面性能提升研究[J].清洗世界,2019,35(1):1-14.Liu Z W,Qiao Y L,Wang S J.The research of the mecha-nism of the pulse laser cleaning and the improvement of cleaning surface performance[J].Cleaning World,2019,35(1):1-14(in Chinese).

    • [4] Liu J,Qiao Y L,Zhang P,et al.Synthesis of SiC ceramics from polysilazane by laser pyrolysis[J].Surface and Coatings Technology,2017,321:491-495.

    • [5] Riedel R,Chen I W.Polymer-derived ceramics:40 years of research and innovation in advanced ceramics [M].Ceram-ics Science and Technology Volume 4:Applications.Wiley ‐ VCH Verlag GmbH & Co.KGaA,2013:245-320.

    • [6] 黄克宁,乔玉林,薛胤昌,等.激光裂解含二茂铁的聚硅氧烷制备 SiOC(Fe)陶瓷涂层研究[J].材料保护,2017(12):5-7.Huang K N,Qiao Y L,Xue Y C,et al.Study on SiOC(Fe)ceramic coatings prepared by laser pyrolysis with ferro-cene polysiloxane[J].Materials Protection,2017(12):5-7(in Chinese).

    • [7] Jiang Y,Li J,Huang F,et al.Polymer-derived SiC/B4C/C,nanocomposites:structural evolution and crystallization behavior [J].Journal of the American Ceramic Society,2014,97(1):310-315.

    • [8] QIAO Y L,ZHAO J X,XUE Y C,et al.Ceramic coatings prepared by laser pyrolysis of polysiloxane modified by titan-ate[J].Laser Technology,2018.

    • [9] 宋麦丽,傅利坤.SiC 先驱体聚碳硅烷的应用研究进展 [J].中国材料进展,2013,32(4):243-249.Song M L,Fu L K.Research progress in application of SiC precursor polycarbosilane [J].Materials China,2013,32(4):243-249(in Chinese).

    • [10] Rühle M,Evans A G.High toughness ceramics and ceramic composites [J].Progress in Materials Science,1989,33(2):85-167.

    • [11] Evans A G.Perspective on the development of high ‐ tough-ness ceramics[J].Journal of the American Ceramic Society,1990,73(2):187-206.

    • [12] Rutkowski P,Huebner J,Kata D,et al.Laser initiated Ti 3 SiC 2,powder and coating synthesis[J].Ceramics Interna-tional,2018:S0272884218307090.

    • [13] 陈少杰,张教强,苏力宏,等.光聚合陶瓷先驱体裂解制备陶瓷涂层及其抗氧化性能[J].材料保护,2010,43(3):4-6.Chen S J,Zhang J Q,Su L H,et al.Preparation and anti-oxidation behavior of ceramic coating prepared by photo cata-lytic pyrolysis of thiol-ene precursor [J].Materials Protec-tion,2010,43(3):4-6(in Chinese).

    • [14] QIAO Y L,ZHAO J X,XUE Y C,et al.Effects of laser py-rolysis parameters on ceramization of polydimethylsiloxane [J].Surface Technology,2017.

    • [15] 赵吉鑫,乔玉林,薛胤昌,等.基于激光裂解含Ti粉聚二甲基硅氧烷的SiTiOC复相陶瓷涂层制备[J].中国激光,2017,44(10):97-103.Zhao J X,Qiao Y L,Xue Y C,et al.Fabrication of SiTiC composite ceramic coating based on laser pyrolysis of Ti-con-taining polydimethylsiloxane[J].Chinese Journal of Lasers,2017,44(10):97-103(in Chinese).

    • [16] 赵吉鑫,乔玉林,薛胤昌,等.不同形态的铝对激光裂解聚硅氧烷制备SiAlCO陶瓷涂层的影响[J].人工晶体学报,2017,46(9):1869-1874.Zhao J X,Qiao Y L,Xue Y C,et al.Effect of different forms of aluminum on SiAlCO ceramic coating prepared by la-ser pyrolisis polysiloxane[J].Jouranal of synthetic crystals,2017,46(9):1869-1874(in Chinese).

    • [17] 刘庆辉,许晓静,戈晓岚,等.TC4 钛合金表面激光合金化 Ti-Si-C 涂层的研究[J].稀有金属,2016(6):546-551.Liu Q H,Xu X J,Ge X L,et al.Research on laser alloying Ti-Si-C coating on TC4 titanium alloy[J].Chinese Journal of Rare Metals,2016(6):546-551(in Chinese).

  • 手机扫一扫看