- 工程前沿 -
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

邓思豪(1978—),男(汉),副教授,博士;研究方向:热喷涂、自动化控制、人工智能;E-mail:sihao.deng@utbm.com

中图分类号:TH1;TG2

文献标识码:A

文章编号:1007-9289(2020)04-0001-15

DOI:10.11933/j.issn.1007-9289.20200530002

参考文献 1
LI W,YANG K,YIN S,et al.Solid-state additive manufac-turing and repairing by cold spraying:A review [J].Journal of Materials Science & Technology,2018,34(3):440-457.
参考文献 2
GIBSON I,ROSEN D,STUCKER B.Additive manufactur-ing technologies [M].Springer,2014.
参考文献 3
GIBSON I,ROSEN D,STUCKER B.Additive manufacturing technologies:3D printing,rapid prototyping,and direct digit-al manufacturing [M].Springer New York.2015:43-61.
参考文献 4
郭志飞,张虎.增材制造技术的研究现状及其发展趋势 [J].机床与液压,2015,43(5):148-151.GUO Z F,ZHANG H.The research status and development trend of additive manufacturing technology[J].Machine Tool & Hydraulics,2015,43(5):148-151(in Chinese).
参考文献 5
YAN X,YIN S,CHEN C,et al.Fatigue strength improve-ment of selective laser melted Ti6Al4V using ultrasonic sur-face mechanical attrition [J].Materials Research Letters,2019,7(8):327-333.
参考文献 6
FRAZIER W.Metal additive manufacturing:A review[J].Journal of Materials Engineering and Performance.2014,23(6):1917-1928.
参考文献 7
DEBROY T,MUKHERJEE T,MILEWSKI J,et al.Scientif-ic,technological and economic issues in metal printing and their solutions [J].Nature Materials,2019,18:1026-1032.
参考文献 8
YAN X,LUPOI R,WU H,et al.Effect of hot isostatic pressing(HIP)treatment on the compressive properties of Ti6Al4V lattice structure fabricated by selective laser melting [J].Materials Letters,2019,255:126537.
参考文献 9
DYKHUIZEN R,SMITH M.Gas dynamic principles of cold spray [J].Journal of Thermal Spray Technology,1998,7(2):205-212.
参考文献 10
李长久.中国冷喷涂研究进展 [J].中国表面工程,2009,22(4):5-14.LI C J.Evolution of cold spray technology in China [J].China Surface Engineering,2009,22(4):5-14(in Chi-nese).
参考文献 11
李文亚,张冬冬,黄春杰,等,冷喷涂技术在增材制造和修复再制造领域的应用研究现状 [J].焊接,2013,(4):2-8.LI W Y,ZHANG D D,HUANG C J,et al.Current research status of applications of cold spray in the field of additive manufacturing and repairing[J].Weding & Joining,2016,(4):2-8(in Chinese).
参考文献 12
RAOELISON R,VERDY C,LIAO H.Cold gas dynamic spray additive manufacturing today:Deposit possibilities,technological solutions and viable applications [J].Materials & Design,2017,133:266-287.
参考文献 13
YIN S,CAVALIERE P,ALDWELL B,et al.Cold spray additive manufacturing and repair:Fundamentals and appli-cations [J].Additive Manufacturing,2018,21:628-650.
参考文献 14
XIE X,CHEN C,MA Y,et al.Influence of annealing treat-ment on microstructure and magnetic properties of cold sprayed Ni-coated FeSiAl soft magnetic composite coating [J].Surface and Coatings Technology,2019,374:476-484.
参考文献 15
WANG Q,SPENCER K,BIRBILIS N,et al.The influence of ceramic particles on bond strength of cold spray composite coatings on AZ91 alloy substrate [J].Surface and Coatings Technology,2010,205:50-56.
参考文献 16
KING P,POOLE A,HORNE S,et al.Embedment of cop-per particles into polymers by cold spray [J].Surface and Coatings Technology,2013,216:60-67.
参考文献 17
AJDELSZTAJN L,SCHOENUNG M,JOSOIN B,et al.Cold spray deposition of nanocrystalline aluminum alloys [J].Met-allurgical and Materials Transactions A,2005,36:657-666.
参考文献 18
KANG H,KANG S.Tungsten/copper composite deposits produced by a cold spray [J].Scripta Materialia,2003,49:1169-1174.
参考文献 19
ASSADI H,KREYE H,GARTNER F,et al.Cold spraying-A materials perspective [J].Acta Materialia,2016,116:82-407.
参考文献 20
Impact Innovations-Your partner for cold spray and engi-neering,(n.d.).https:∥www.impact-innovations.com/en/coldgas/applications_en.html.
参考文献 21
Consumer Goods,(n.d.).https:∥www.titomic.com/con-sumer-goods.html.
参考文献 22
Brothers In Arms:These Robots Put A New Twist On 3D Printing-GE Reports,(n.d.).https:∥www.ge.com/re-ports/brothers-arms-robots-put-new-twist-3d-printing/.
参考文献 23
Industry Applications,SPEE3D.(2019).https:∥www.spee3d.com/industry-applications/.
参考文献 24
张俊宝,史弼,宋洪伟.冷喷涂用复合陶瓷拉乌尔型喷嘴 [P].CN1939595A,2007.https:∥patents.google.com/patent/CN1939595A/pt.ZHANG J B,SHI B,SONG H W.Composite ceramic Raoul nozzle for cold spraying [P].CN1939595A,2007.https:∥ patents.google.com/patent/CN1939595A/pt(accessed A-pril 19,2020)(in Chinese).
参考文献 25
深沼博隆.冷喷涂用喷嘴以及使用该冷喷涂用喷嘴的冷喷涂装置[ P ].CN102892926A,2013.https:∥patents.google.com/patent/CN102892926A/zh?oq = + CN + 102892926+.SHEN Z B L.Nozzle for cold spray,and cold spray device u-sing nozzle for cold spray [P],CN102892926A,2013.ht-tps:∥patents.google.com/patent/CN102892926A/zh?oq = +CN + 102892926 +(accessed April 19,2020)(in Chi-nese).
参考文献 26
KOTOBAN D,GRIGORIEV S,OKUNKOVA A,et al.In-fluence of a shape of single track on deposition efficiency of 316L stainless steel powder in cold spray [J].Surface and Coatings Technology,2017,309:951-958.
参考文献 27
WU H,XIE X,LIU M,et al.Stable layer-building strategy to enhance cold-spray-based additive manufacturing [J].Additive Manufacturing,2020,35:101356.
参考文献 28
TABBARA H,GU S,MCCARTEY D,et al.Study on process optimization of cold gas spraying [J].Journal of Thermal Spray Technology,2011,20:608-620.
参考文献 29
SUO X,LIU T,LI W,et al.Numerical study on the effect of nozzle dimension on particle distribution in cold spraying [J].Surface and Coatings Technology,2013,220:107-111.
参考文献 30
SOVA A,GRIGORIEV S,OKUNKOVA A,et al.Potential of cold gas dynamic spray as additive manufacturing technolo-gy [J].The International Journal of Advanced Manufacturing Technology,2013,69:2269-2278.
参考文献 31
DENG S.Programmation robotique hors-ligne et contrôle en temps réel des trajectoires:Développement d’ une extension logicielle de“Robotstudio”pour la projection thermique [D].2006.
参考文献 32
DENG S,CAI Z,FANG D,et al.Application of robot off-line programming in thermal spraying [J].Surface and Coat-ings Technology,2012,206:3875-3882.
参考文献 33
CAI Z.Programmation robotique en utilisant la méthode de maillage et la simulation thermique du procédé de la projec-tion thermique [D].2014.
参考文献 34
GADOW R,CANDEL A,FLORISTAN M.Optimized robot trajectory generation for thermal spraying operations and high quality coatings on free-form surface[J].Surface and Coat-ings Technology,2010,205(4):1074-1079.
参考文献 35
PATTISON J,CELOTTO S,MORGAN R,et al.Cold gas dynamic manufacturing:A non-thermal approach to freeform fabrication [J].International Journal of Machine Tools and Manufacture,2007,47:627-634.
参考文献 36
LYNCH M,GU W,El-WARDANY T,et al.Design and to-pology/shape structural optimisation for additively manufac-tured cold sprayed components [J].Virtual and Physical Prototyping,2013,8:213-231.
参考文献 37
CORMIER Y,DUPUIS P,JODOIN B,et al.Net shape fins for compact heat exchanger produced by cold spray [J].Jour-nal of Thermal Spray Technology,2013,22:1210-1221.
参考文献 38
CORMIER Y,DUPUIS P,JODOIN B,et al.Finite element analysis and failure mode characterization of pyramidal fin ar-rays produced by masked cold gas dynamic spray [J].Jour-nal of Thermal Spray Technology,2015,24:1549-1565.
参考文献 39
CORMIER Y,DUPUIS P,JODOIN B,et al.Mechanical properties of cold gas dynamic-sprayed near-net-shaped fin arrays [J].Journal of Thermal Spray Technology,2015,24:476-488.
参考文献 40
WU H,XIE X,LIU M,et al.A new approach to simulate coating thickness in cold spray [J].Surface and Coatings Technology,2020,382:125151.
参考文献 41
LI W Y,YIN S,WANG X F.Numerical investigations of the effect of oblique impact on particle deformation in cold spra-ying by the SPH method [J].Applied Surface Science,2010,256:3725-3734.
参考文献 42
LI W Y,ZHANG D.Modelling of impact behaviour of cold spray particles:Review [J].Surface Engineering,2014,30:299-308.
参考文献 43
ASSADI H,GÄRTNER F,STOLTENHOFF T,et al.Bond-ing mechanism in cold gas spraying [J].Acta Materialia,2003,51:4379-4394.
参考文献 44
LI W Y,LIAO H,LI C J,et al.On high velocity impact of micro-sized metallic particles in cold spraying [J].Applied Surface Science,2006,253:2852-2862.
参考文献 45
GRUJICIC M,ZHAO C L,DEROSSET W S,et al.Adiabat-ic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process [J].Materi-als & Design,2004,25:681-688.
参考文献 46
YIN S,WANG X,XU B,et al.Examination on the calcula-tion method for modeling the multi-particle impact process in cold spraying [J].Journal of Thermal Spray Technology,2010,19:1032-1041.
参考文献 47
RAOELISON R N,KOITHARA L L,COSTIL S,et al.Tur-bulences of the supersonic gas flow during cold spraying and their negative effects:A DNS CFD analysis coupled with ex-perimental observation and laser impulse high-speed shadow-graphs of the particles in-flight flow [J].International Jour-nal of Heat and Mass Transfer,2020,147:118894.
参考文献 48
BREUNINGER P,KRULL F,HUTTENLOCHNER K,et al.Microstructuring of steel surfaces via cold spraying with 316L particles for studying the particle-wall collision behavior [J].Surface and Coatings Technology,2019,379:125054.
参考文献 49
YIN S,WANG X,LI W,et al.Numerical study on the effect of substrate angle on particle impact velocity and nor-mal velocity component in cold gas dynamic spraying basedon CFD [J].Journal of Thermal Spray Technology,2010,9:1155-1162.
参考文献 50
YIN S,MEYER M,LI W,et al.Particle acceleration,and heat transfer in cold spray:A review [J].Journal of Thermal Spray Technology,2016,25:874-896.
参考文献 51
HANSBO A,NYLÉN P.Models for the simulation of spray deposition and robot motion optimization in thermal spraying of rotating objects [J].Surface and Coatings Technology,1999,122:191-201.
参考文献 52
CHEN C,XIE Y,VERDY C,et al.Numerical investigation of transient coating build-up and heat transfer in cold spray [J].Surface and Coatings Technology,2017,326:355-365.
参考文献 53
CAI Z,DENG S,LIAO H,et al.The effect of spray dis-tance and scanning step on the coating thickness uniformity in cold spray process [J].Journal of Thermal Spray Technolo-gy,2014,23:354-362.
参考文献 54
HOOF T V,FRADET G,PICHOT F,et al.Simulation of thermal spray coating on 3D objects:Numerical scheme and aeronautic test case [J].Journal of Thermal Spray Technolo-gy,2019,28:1867-1880.
参考文献 55
ZHANG Y,LI W,ZHANG C,et al.A spherical surface coating thickness model for a robotized thermal spray system [J].Robotics and Computer-Integrated Manufacturing,2019,59:297-304.
参考文献 56
YIN S,LIAO H L,WANG X F,Euler based finite element analysis on high velocity impact behaviour in cold spraying [J].Surface Engineering,2014,30:309-315.
参考文献 57
SONG X,NG K L,CHEA J,et al.Coupled Eulerian-La-grangian(CEL)simulation of multiple particle impact during metal cold spray process for coating porosity prediction [J].Surface and Coatings Technology,2020,385:125433.doi:10.1016/j.surfcoat.2020.125433.
参考文献 58
WANG Q,LUO X,TSUTSUMI S,et al.Measurement and analysis of cold spray residual stress using arbitrary Lagrang-ian-Eulerian method [J].Additive Manufacturing,2020,35:101296.
参考文献 59
COLIN F,EGLI R,LIN F Y.Computing a null divergence velocity field using smoothed particle hydrodynamics [J].Journal of Computational Physics,2006,217:680-692.
参考文献 60
BUI H H,SAKO K,FUKAGAWA R.Numerical simulation of soil-water interaction using smoothed particle hydrodynam-ics(SPH)method [J].Journal of Terramechanics,2007,44:339-346.
参考文献 61
CHEN C,XIE Y,VERDY C,et al.Modelling of coating thickness distribution and its application in offline program-ming software [J].Surface & Coatings Technology,2017,318:315-325.
参考文献 62
CAI Z,DENG S,LIAO H,et al.The effect of spray dis-tance and scanning step on the coating thickness uniformity in cold spray process [J].Journal of Thermal Spray Technolo-gy,2014,23:354-362.
参考文献 63
ORTIZ-FERNANDEZ R,JODOIN B.Hybrid additive manu-facturing technology:Induction heating cold spray—Part I:Fundamentals of deposition process [J].Journal of Thermal Spray Technology,2020,29(6):1-16.
参考文献 64
ORTIZ-FERNANDEZ R,JODOIN B.Hybrid additive manu-facturing technology:Induction heating cold spray—Part II:Coating mechanical properties [J].Journal of Thermal Spray Technology,2020,29(6):1-14.
参考文献 65
CHRISTOULIS D,GUETTA S,IRISSOU E,et al.Cold-spraying coupled to nano-pulsed Nd-YaG laser surface pre-treatment [J].Journal of Thermal Spray Technology,2010,19:1062-1073.
参考文献 66
KROMER R,COSTIL S,CORMIER J,et al.Laser surface patterning to enhance adhesion of plasma sprayed coatings [J].Surface and Coatings Technology,2015,278:171-182.
参考文献 67
GUO D.Economic potential of cold spraying MCrAlY coat-ings:Use of nitrogen and feasibility of powder recycling [C].ITSC 2019.https:∥asm.confex.com/asm/itsc19/webprogram/Paper46759.html.
目录contents

    摘要

    近些年来,冷喷涂技术得到快速的发展,并逐渐形成了一门新的增材制造方法。 但由于目前存在的诸多技术壁垒以及居高不下的制造成本,使得冷喷涂增材制造技术尚未得到广泛的应用。 文中从技术与应用的角度出发,对冷喷涂增材制造目前存在的一些关键技术问题以及未来发展的方向进行梳理与讨论,同时也提出了一些适用的解决方案。 目的是为促进该技术实现更高价值的制造过程,从而推动冷喷涂增材制造技术的发展。

    Abstract

    In recent years, cold spray technology has been developed rapidly, forming a new additive manufacturing method gradually. However, due to the existing technical limitations and high production costs, cold spray additive manufacturing technology has not yet been widely applied. In this paper, the key technical problems and future development directions of cold spray additive manufacturing were sorted out and discussed in views of technic and application. Meanwhile, some applicable solutions responding to each issue were put forward. The purpose is to elevate this technology to achieve a higher value manufacturing process, thereby promoting the development of cold spray additive manufacturing technology

    关键词

    冷喷涂增材制造金属复合制造机器人

  • 0 引言

  • 增材制造技术(也称为快速成型或3D打印) 被誉为是21 世纪的第一次制造业“革命”。在过去的二十几年的发展过程中,逐渐地从“狭义”的增材制造发展到“广义” 增材制造(如图1 [1] 所示),前者是指不同的能量源与CAD/CAM技术结合、分层累加材料的技术体系;后者则以材料累加为基本特征,以直接制造零件为目标的大范畴技术群[2-3]。与传统的加工方法相比,增材制造技术可以快速加工复杂形状的零件,特别是在个性化零件的设计与生产过程中,增材制造技术的应用可以大大缩短零件的生产周期。通过增材制造技术构建的产品不仅可以减少原材料的使用,同时也潜在地改善了产品的性能。如今, 增材制造技术在航空、航天、汽车、生物医学和其他行业中取得了飞速发展。多种类型的增材制造技术已经在商业上进行使用,例如选择性激光熔化(Selective laser melting, SLM),选择性激光烧结(Selective laser sintering, SLS)和电弧增材制造( Wire arc additive manufacturing, WAAM) 等[4-8]。然而这些技术所使用的大功率电子束或高频激光辐射可能导致材材料在加热或熔化过程中产生诸如氧化、晶粒长大、相变以及残余热应力等不良反应。

  • 图1 不同的增材制造工艺[1]

  • Fig.1 Different additive manufacturing processes [1]

  • 冷气动力学喷涂,简称冷喷涂( Cold spray, CS),最早于20 世纪80 年代中期由俄罗斯原苏联科学院西伯利亚分院理论和应用力学研究所的科学家在空洞试验中首先发现的[9-10]。经过多年来的研究与发展,冷喷涂已经成为一门相对独立和成熟的表面涂层技术,并应用于化工、汽车、航空航天、造船、电子、机械、造纸等多个制造领域。如今,由于冷喷涂在构建塑性金属和金属基复合材料3D部件方面具有诸多优势而被人们高度关注,并逐渐发展出了基于冷喷涂的增材制造新方法[10-12],独特的制造方法使其成为潜在竞争性的技术之一[13-18]。首先,作为一种低温材料加工技术,冷喷涂过程中对材料的热影响小,喷涂粒子基本没有氧化、相变或晶粒长大的风险, 适用于温度敏感材料、氧化敏感材料和相变敏感材料,例如铝、铜、钛以及它们的合金等;其次,冷喷涂涂层密度高,孔隙率低,涂层内部通常表现有适当的残余压应力,能够制备一些高性能的零部件;此外,冷喷涂的喷涂粒子沉积率高,加工生产速度快,可以达到每小时几公斤乃至十几公斤的高沉积速率,这种能够快速进行增材制造的特点正是该工艺区别于其他增材制造技术的关键特征之一(如图2 所示)。

  • 图2 冷喷涂与其他增材制造工艺的比较

  • Fig.2 Comparison of cold spray with other additive manufacturing processes

  • 然而,除了冷喷涂技术本身固有一些局限性外,例如制造精度底、喷涂过程控制相对困难等, 基于冷喷涂的增材制造在实际应用中也存在着一些亟待解决的问题,在此之前有必要对这些问题进行系统性地梳理与讨论。因此,文中从技术应用的角度出发,对冷喷涂增材制造目前存在的一些关键性技术问题进行研究与讨论。同时针对不同问题提出了一些适用的解决方案作为参考。最后对冷喷涂增材制造发展方向进行了展望。

  • 1 冷喷涂增材制造原理及发展状况

  • 冷喷涂增材制造技术( Cold spray additive manufacturing, CSAM) 是基于CS发展起来的一门新的3D打印技术。因此,CSAM继承了CS核心的原理,目前采用的一些相关配置也基本相同。如图3 所示,现代CS系统主要由高压压缩气源、电热源、喷枪、送粉器、控制系统、工业机器人以及其他外围设备等构成。压缩气源可以是空气、氩气、氮气或氦气。它被分为两路不同的工作气体,其中一路被送入气体加热器中作为主气体———推进气体,并且被加热到设定温度,另一路则作为运送粉末的载气。最后,气体和粉末颗粒一起进入喷枪。在加速气体和拉瓦尔喷嘴的共同作用下,微米级粉末颗粒被加速至超音速(最高可达1500 m/s),然后在到达基体时发生强烈的塑变形产生结合并形成涂层[9,19]

  • 对于CSAM而言,除了固有的加工涂层的功能以外,主要目的是用于制造3D零部件。与CS的区别可以简单地从是否具备一定厚度以及形状结构上进行区分。迄今为止,一些公司和研究机构已在CSAM技术上进行了大量投资,并取得了各种突破性的成果。如图4( a) 所示,这是由德国冷喷涂设备IMPACT公司采用CSAM生产的大型结构铜铝部件[20]。图4(b)是由澳大利亚冷喷涂打印技术Titomic公司生产的安装在自行车上的钛合金车架[21],该公司一直致力于冷喷涂新材料的开发以及大型或复杂形状金属零件的大批量生产。图4(c)中是通用电气公司(GE) 联合德国冷喷涂设备企业( Impact) 首次采用的两个工业机器联动的方案制造大型金属零部件, 其中一个机器人负责握住零件进行移动,而另一个机器人夹持喷枪进行喷涂[22]。此外,澳大利亚的SPEE3D企业更是实现了冷喷涂金属3D打印机的商业化生产,图4( d) [23] 是该公司利用冷喷涂的3D打印机设备制造的铜凸轮。

  • 图3 冷喷涂原理示意图

  • Fig.3 Schematic diagram of cold spraying principle

  • 图4 CSAM的应用

  • Fig.4 Applications of CSAM

  • 2 冷喷涂增材制造的关键技术

  • CSAM工艺可以通过逐层沉积材料来成形一些金属零部件,然而其生产的零件存在着诸如表面质量较差、精度低、涂层结存在明显的孔隙等缺点。此外,在持续喷涂较厚的涂层时,残余应力可能导致的涂层的变形甚至从基体上脱落。 CSAM系统响应时间长、加工手段单一等局限在一定程度上也限制了CSAM的发展。因此,在大多数应用中,仅CSAM工艺无法产生最终零件所需的精度和性能。除了克服CS自身存在的问题外,还必须想办法引入更多的工艺流程来实现混合增材制造( Hybrid additive manufacturing, HAM),以适应新的发展以及智能制造的发展的趋势。下面就CSAM存在的一些技术问题进行相应的讨论。

  • 2.1 CSAM喷嘴

  • 为了应对不同材料,不同加工条件的喷涂作业现象, CSAM也需具备如同数控加工中心(Computer numerical control, CNC)的刀具库一样建立一个喷涂专用喷嘴库。从喷嘴材料的角度考虑:目前常用的冷喷涂喷嘴材料一般为金属, 主要有不锈钢、工具钢和超硬合金金属等,也有采用烧结碳化钨材料制备的喷嘴。采用金属材料的缺点就是耐高温性能较差,而冷喷涂过程中的工作气体一般都会被加热到较高温度,这使得在喷涂一些低熔点金属材料时,容易在喷嘴中发生粘结,特别是在拉瓦尔嘴“喉咙”部位,这是非常不利的,不仅会导致误工误产,而且也不能满足大型部件的持续制造的要求。为了解决这一问题,张俊宝等[24] 发明了复合陶瓷材料制备的冷喷涂用拉瓦尔喷嘴,解决了粘喉问题,提高了耐磨性和使用寿命;深沼博隆[25] 发明了一种玻璃材料的喷嘴,有效的防止了喷嘴阻塞的问题。法国LERMPS热喷涂实验室与广东省新材料研究所一起研发了内置冷却水回路的3D打印高温合金喷嘴来提高喷嘴的耐高温性,如图5 所示。

  • 图5 3D打印CSAM喷嘴

  • Fig.5 CSAM nozzle by 3D printing

  • 从制造的角度考虑:在零件的制造过程中, 往往需要加工一些小尺寸单元或者具有垂直墙壁等基础性结构的工件。但是,由于普通的喷嘴出口直径一般在 Φ4~10 mm的范围内,喷涂轨道的最小宽度受到限制,因此在未采用有效的喷涂策略或者后续机械加工的情况下,一般的拉瓦尔喷嘴将无法满足小尺寸的加工。同时,往复地垂直喷涂也因喷涂特性以及喷嘴的结构而无法获得具有垂直墙壁结构的单道涂层。 Kotoban等[26] 解释了圆形拉瓦尔喷嘴形成单道“三角形”涂层的原因,同时也研究了“三角形”涂层形成过程对沉积效率的影响。如图6 所示[27],在喷涂过程中,粉末射流中心的颗粒速度通常高于其他区域里颗粒的速度,此外,沉积在轨道的中心区域上的颗粒的绝对数量和尺寸都比边缘上的颗粒具有优势,导致涂层的中心区域增长较快而边缘增长较慢,该过程中边缘粒子冲击角的逐渐减小, 影响着粒子的沉积行为,进一步加剧了后续颗粒沉积的难度,最终形成了中间高两边低的典型 “三角形”涂层轮廓。因此需要改变喷嘴的基本参数包括形状等来调整射流中粉末的分布,从而提高CSAM造型的能力。 Tabbara等[28]研究了不同喷嘴截面形状对出口处粒子分布和速度的影响,其中包括圆形、椭圆形以及矩形喷嘴; Suo等[29]研究了矩形喷嘴的不同基本尺寸参数对喷嘴出口处颗粒分布的影响。研究表明,加速过程中的粒子流特性与涂层的最终几何形状有关,喷嘴的形状和大小影响粉末射流中颗粒的数量以及大小分布。此外,颗粒倾向于在喷嘴加速通道上扩散,从而导致出口流变宽,难以产生狭窄的单道涂层沉积。 Sova等[30] 采用直径和长度均很小的喷嘴来减少粉末的发散,获得小于1 mm的喷涂斑点(如图7( a)所示),提高了冷喷涂在小尺寸造型方面的能力。然而,使用微喷嘴时由于喷涂过程中的粉末经历加速的时间很短,因此可能难以形成比较致密的沉积物[28]。此外,最近德国冷喷涂设备企业( Impact) 发明了可以产生均匀平坦的单道涂层冷喷喷枪喷嘴( 如图8 所示) [20],相比产生类高斯分布涂层的“标准” 喷嘴,该喷嘴提高了冷喷涂增材制造过程中造型的能力。

  • 图6 粒子沉积示意图[27]

  • Fig.6 Schematic diagram of particle impact conditions [27]

  • 目前,法国LERMPS热喷涂实验室尝试使用不同规格的喷嘴来产生不同的粉末射流进行喷涂,如图7( b) 所示。未来还会进行更多的试验并配备更多特定加工条件的喷嘴来适应不断发展的制造需求。

  • 图7 CSAM喷嘴

  • Fig.7 Nozzle for CSAM

  • 图8 均匀平坦的单道冷喷铜涂层[20]

  • Fig.8 Uniform and flat CS copper single track [20]

  • 2.2 机器人喷涂路径规划

  • 在实际喷涂过程中,需要精确控制喷枪以获得所需的涂层厚度或涂层形貌。工业机器人由于具备高精度、高灵活性和高自动化等性能而被广泛应用于冷喷涂领域。对于在形貌复杂零件冷喷增材制造中,机器人更是发挥着至关重要的作用。增材制造过程最关键的步骤莫过于创建制造路径程序。 CSAM除了需要快速创建一些复杂的涂层喷涂路径外,还需要能够规划和创建3D制造的路径。目前,研究人员已经开发了许多高效的涂层路径创建方法[31-34]。例如,Deng等[31-32]在机器人离线编程软件上采用切片方式处理喷涂表面(如图9),并开发了基于Robotstudio软件的热喷涂专用程序包;Cai [33]介绍了基于网格的轨迹生成方法,以在自由形式的曲面上创建喷涂路径,如图10 所示;Gadow等[34]利用Matlab软件创建特殊的程序处理CAD模型的数据, 形成三维空间中的网格数据点,再遵循所开发的算法创建并优化喷涂路径,如图11 所示。但由于冷喷涂制造的特点,在规划和创建3D喷涂制造的路径方面尚没有有效的处理方法,虽然有可能直接从目前主流3D打印所采用的Gcode代码透过某种方式编译为冷喷涂机器人可执行的路径程序,然而还是会存在诸多的不适应性。因此,亟待开发CSAM路径规划算法和专用软件。法国LERMPS热喷涂实验室目前采用机器人离线编程的方法来创建制造对象的喷涂路径,使用的是ABB机器人离线编程模拟软件RobotStudio。如图12 所示,首先需要建立一个与实际喷涂车间配置相同的虚拟工作站,包括相同型号的机械手、大小一致的喷枪和工装以及各个元素之间相同的摆放等。这样最大的好处就是可以真实反映实际喷涂过程,随时修改喷涂程序,还能观察各元素之间是否发生了干涉,进而有效防止实际喷涂中发生设备相互间的碰撞。接着是对喷涂轨迹进行规划并创建机器人路径程序。利用软件基本功能以及开发的热喷涂专用软件包,同时针对一些复杂的路径,还可以开发特定的代码去实现。然而目前还未有应对CSAM路径规划的高效解决方法。最后再把自动创建的程序导入给实际机器人去执行。在未来CSAM路径规划方法的开发上,除了要考虑冷喷涂特性外,还要兼顾材料特点、加工对象、零件精度以及加工时长等诸多影响因素。在CSAM过程中,制造复杂形状工件的成功与否还取决于提出的喷涂策略是否适用和有效。

  • 图9 基于切片方式的喷涂路径创建方法[31]

  • Fig.9 Method for generation of CS path based on slice method [31]

  • 图10 基于ANSYS网格的喷轨迹径创建方法[33]

  • Fig.10 Method for creating CS path based on ANSYS grid [33]

  • 图11 基于MATLAB的喷轨迹创建方法[34]

  • Fig.11 Method for creating CS path based on MATLAB [34]

  • 图12 CSAM机器人离线编程

  • Fig.12 Robot offline programming in CSAM

  • 2.3 喷涂策略

  • 喷涂策略旨在根据CSAM的特性提出适用的解决方案,从而避开CS的技术局限性。目前, 已有诸多的研究人员提出了很多卓有成效的制造策略。 Pattison等[35] 提出了“三角形镶嵌” 的策略来制造厚的涂层或者垂直的墙壁。如图13 所示,在已形成的“三角形”涂层的一边倾斜喷嘴以进行另一“三角形”的构建,以此类推,去堆积出最终的结构造型。此外,Pattison等[35] 还提出了采用喷涂后溶解铝的方法来制造具有内部凹槽的结构部件,图14 为采用这种制造策略制备的含有凹槽的钛合金部件。 Lynch等[36] 通过将冷喷涂沉积特性与拓扑优化思想相结合,对一个支架结构进行设计和制造,取得了显著的效果。如图15 所示,提出了一个可靠的指导过程,从三维结构的设计,到使用拓扑优化技术以及控制喷涂路径,最后对获得的毛坯进行进一步的加工, 形成最终支架的造型。另外,还考虑到加入一些支撑结构,这跟当下主流的3D打印技术的加工思路非常一致,更有力的证明了CSAM在复杂结构方面的潜力。 Cormier等[37-39] 在冷喷涂过程中,利用掩模版来制造锥型点阵换热器,同时分析了换热性能并获得良好的结果,如图16 所示。他们的研究提供了一种启示,即可以考虑在制造过程中设计和添加不同图案的掩模版来生产不同的零部件。此外,法国LEMPS实验室开发了另一种可能更适应且更有效的稳定涂层构建方法,如图17 所示[27],在基于对系统参数、粉末特性、控制参数对涂层影响进行分析后,选取有效的参数创建涂层厚度模型。并根据策略中所涉及的3 个重要参数进行系统的研究,过程中采用自主开发的模型[40]模拟出最佳参数的组合,最终实验与模拟结果相符合。该方法提高了冷喷涂稳定涂层构建的能力,并且易于控制和重复使用,某种意义上使冷喷涂成为逐层堆积的增材制造方法。后续将在这方面技术上进行一步强化, 同时开发更多的制造策略并配合更多更先进的制造方法来提高CSAM控型能力和精度。

  • 图13 三角形镶嵌策略[35]

  • Fig.13 Triangular tessellation scheme [35]

  • 图14 溶解铝的方法制备的含有凹槽的钛合金部件[35]

  • Fig.14 A titanium component constructed with an internal channel, prepared by dissolving aluminum [35]

  • 图15 使用CS和拓扑优化技术制造的零件[36]

  • Fig.15 A part manufactured using CS and topology optimization technology [36]

  • 图16 利用掩模版制造的锥型点阵换热器[37]

  • Fig.16 Pyramidal fin arrays produced by masked CSAM [37]

  • 2.4 CSAM模拟与仿真

  • 随着CSAM的不断发展,喷涂的材料以及喷涂的对象和应用的领域也在不断地扩展。面对不同的喷涂条件,如何在最短的时间内获得最佳的喷涂策略和参数是实现CSAM产生实际效益的关键所在。因此,从生产和设计理念上,要转变以模拟仿真以及经验为主的设计与制造理念,通过先进的模拟与仿真,可以给喷涂的结果提供预判,以及对喷涂的参数进行优化,从而快速有效地指导生产制造的进程。此外,CSAM的模拟与仿真也是提高理论认知的重要手段。目前,关于CS模拟的研究与应用主要集中在粉末颗粒的碰撞[41-46]、粉末射流行为[47-50] 以及涂层厚度[51-55]等。

  • 冷喷涂单颗粒子或者多颗粒冲击模拟通常是利用ANASYS或ABAQUS等分析软件进行建模, 常用的模型有拉格朗日( Lagrange) 模型[44-45]、欧拉(Eulerian)模型[56-58] 以及光滑粒子流体动力学模型( Smoothed-particle hydrodynamics) [59-60]等,通过设置各种相关参数,包括粉末和基体材料、喷涂条件和环境等,编写计算程序后运行并获得相应的模拟结果。图18 为典型的冷喷涂多颗粒撞击实验的模拟结果。这对了解材料的沉积特性和变形行行为,以及提高CS的沉积理论认识等都是必不可少的。此外,喷嘴内部的粉末在射流中的运动仿真也是非常关键的, 可以模拟和计算粉末颗粒在整个喷涂过程中的温度和速度,进而了解整个系统对粉末射流行为的影响,从而指导喷涂参数的选取以及喷涂沉积效率的提高,同时该仿真也是深入理解冷喷涂原理和过程的重要方法。

  • 图17 稳定的涂层构建方法[27]

  • Fig.17 Stable layer building method [27]

  • 图18 采用拉格朗日法在100 和180 ns模拟时的多颗粒撞击基材塑性变形轮廓[46]

  • Fig.18 Contours of effective plastic strain of multi-particle impacting on the substrate at 100 and 180 ns modeled by Lagrange method [46]

  • 对于CSAM造型过程来讲,涂层模拟方法是未来一个重要的研究方向,它可以直观的了解在设定喷涂条件下的涂层堆积生长过程,这对提供最佳的喷涂策略,调整并优化喷涂参数和喷涂路径等具有很大的帮助。目前大多数涂层的模拟只是一些厚度与分布的数值模拟[51-55],无法呈现更复杂或者持续动态模拟仿真过程。未来有待开发适合CSAM动态涂层堆积的模拟方法,这对提高CSAM控型的能力是非常有帮助的。法国LERMPS热喷涂实验室最近开发了一种冷喷涂层模拟的新方法[40],该方法是基于CAD模型的可视化涂层模拟方法,能够预测具有复杂曲面的组件的涂层厚度,包括在具有“遮蔽效应”情况。首先,基于高斯分布, 建立了涂层轮廓的三维几何模型。该模型与机器人轨迹和喷涂参数相结合,在机器人离线编程软件中模拟涂层沉积的过程。最后,在图形化虚拟环境中显示了涂层的分布以及涂层的厚度。根据仿真结果,可以反馈调整机器人的轨迹、操作参数和喷涂策略,以实现所需的涂层设计。图19 是利用该模拟方法在具有“ 遮蔽效应”的工件上产生的涂层结果。目前该模拟方法也被应用到稳定涂层生长策略的参数优化过程中(如图17 所示)。

  • 图19 喷涂在具有“遮蔽效应” 的工件上的涂层以及相应的涂层模拟结果[40]

  • Fig.19 CS coating on the workpiece with ‘ shading effect’ and corresponding coating simulation results [40]

  • 在面对未知的结果,CSAM模拟与仿真提供了很好的预测和解决方案,实际应用中更是需要利用好模拟来开发更多的材料应用。因此,未来需要发展更多高效并且可以模拟多种复杂条件的模型与方法,以实现更科学的指导作用。然而,CSAM想要实现商业化需要解决的另一个问题便是在实际喷涂过程中有时会出现一些意外且不可把控的事件,使得工件的尺寸和性能难以得到保证。

  • 2.5 在线监测

  • 当前,许多研究都集中在冷喷涂过程的建模上, 以揭示操作参数与喷涂层之间的关系[61-62]。这些模型通常用于预测涂层厚度和性能,从而可以实现最佳喷涂策略。但是,这种方法仅对CSAM中的战略规划有帮助,无法解决实际喷涂过程中的偏差和干扰。大多数时候基本上是通过反复试验方法来获得理想的结果。尽管针对冷喷增材制造技术的研究逐渐增多, 但其工艺难以实现标准化,制件的质量一致性难以保证,涂层的力学性能和几何精度都可能会出现较大的偏差。究其原因,主要是因为目前增材制造工艺一般采用开环或半闭环控制, 对于中间过程的监控相对有限。因此,稳定的制造过程除了应该具备可靠的系统和制造策略外,同时还需具备在线实时检测和控制的能力, 这也是实现智能制造的必经阶段。在传统冷喷涂过程中,已有引入一些实时监测的手段,例如采用一些光学仪器在线测试粒子飞行速度和温度,使用接触式的热电偶或者非接触式的辐射测温传感器跟踪涂层和基体温度的变化等。然而,对于CSAM,重点可能还在制造过程中形状和精度上的监测和控制。目前由于缺乏这方面的经验方法,法国LEMPS实验室开始在CSAM线监控技术上做了初步的可行性研究工作。为了能够在线检测涂层的堆积过程,在系统中引入并使用了高速3D激光轮廓仪对涂层轮廓进行扫描。如图20 所示,轮廓仪与一台计算机和机器人控制柜通过端口连接的方式互联,以确保高速可靠的通信。一个完整的程序包括:创建连接、运行喷涂程序、发送扫描请求、扫描并接收返回的数据、判断数据的有效性、诊断并做出相应的决策、返回反馈信息以及保存数据。此外,该研究也包含了其他一些可行的假想和试验,比如对于每次采集的数据进一步处理并保存,这些大量实时采集的数据便可作为机器学习的可靠样本,对进一步优化制造参数将有很大的帮助。由于仅采用单一的CSAM工艺构建的工件的尺寸和性能通常无法满足最终零件的性能和精度要求,因此必须在制造过程中加入其他适用的制造单元,进一步强化整个制造系统的适应能力。

  • 图20 在线检测涂层的堆积过程示意图

  • Fig.20 Schematic diagram of on-line monitoring for coating accumulation process

  • 2.6 复合技术

  • 当前,研究人员提出了复合增材制造的概念,即CSAM通过与多种技术联合应用,以便获得更佳的喷涂效果。

  • 在持续的冷喷涂过程中,由于机器人运动的惯性作用,使得喷枪在改变方向时速度会有所降低,结果造成局部涂层厚度不均匀的现象。此外, 送粉稳定性基体基本特征等也会影响涂层的均匀性,这种不均匀性会持续影响后续的喷涂过程,导致涂层的精度偏差越来越大。因此,提出了增材与减材迭代的喷涂方法,在喷涂过程中引入机械加工方式及时调控加工精度。这是具有挑战性的并且可以彻底改变整个工艺的流程。 Pattison等[35]开始在他们所开发的CSAM设备中尝试置入了机加工装置,如图21 所示,在喷涂完每一层后, 根据需要将零件表面铣平或做其他方式的加工, 从而在喷涂结束后获得最终的涂层形状。然而, 要想更好地无缝耦合机械减材与冷喷涂增材这两个工艺,还需要进行更多的研究和尝试。

  • 另外,在通常情况下,冷喷后的涂层都具有很高的强度,但是往往伴随着较差的延展性,这是由于喷涂过程中加工硬化导致的。一般根据需要会在喷涂完后采用热处理的方式对涂层进行改性,从而获得更好的使用性能。研究人员正研究可以在喷涂过程中就能进行改性的方法。目前大多数研究只是改善了涂层与基体的结合性能,其中,直接预热基体或者采用激光处理是一些常用的手段。 OrtizFernández等[ 63-64] 通过耦合感应加热和冷喷涂工艺来提高软金属材料与硬质基材结合性能, 如图22 所示。结果表明,感应加热器的应用使涂层的沉积效率和厚度增加了1 倍,而且原位感应加热可以获得比普通基体预热好的效果。此外,使用激光对基体或者涂层进行同步处理,可以提高涂层的结合性能。如图23 所示, Christoulis等[65]在涂层沉积之前,采用高能脉冲激光束扫描基体,引起基底表面的烧蚀和熔化以去除表面氧化物,提高基材和涂层之间的结合力。 Kromer等[66]对基材表面采用激光纹理化处理,如图24 所示。结果表明,与喷砂相比,激光纹理化处理进一步提高了基材和涂层之间的结合力。

  • 图21 冷喷涂喷嘴与机加工主轴[35]

  • Fig.21 CS nozzle and machining spindle [35]

  • 图22 冷喷涂工艺中使用的感应加热装置示意图[63]

  • Fig.22 Schematic diagram of induction heating device used in cold spray process [63]

  • 图23 激光处理的冷喷涂过程示意图[65]

  • Fig.23 Schematic diagram of CS with laser process [65]

  • 图24 激光纹理处理的样品[66]

  • Fig.24 Laser textured samples [66]

  • 因此,在冷喷涂增材过程中加入不同的技术是必要且有效的。法国LERMPS实验室正在对CSAM进行新的系统部署。采用模块化系统设计的方式开发多技术耦合的CSAM系统,实现以冷喷涂工艺为主,多制造加工技术为辅的现代化增材制造。如图25 所示,目前规划了几个模块,包括前处理模块、中间处理模块以及后处理模块。前处理模块主要是计算机辅助制造技术,包括机器人离线编程和数值模拟计算等,对制造路径进行创建和优化,并预测制造结果。中间模块主要由机器人模块、机加工模块和在线监控模块组成,未来还可能加入更多的技术模块。后处理模块主要是用来改善部件性能的热处理工艺模块。这样的设计方式有助于清晰地了解整个系统关键要素之间的物理和功能关系,这种物理和功能模块化的方式是促进混合增材制造过程的必要条件。此外这种方式还有助于缩短产品研发与制造周期、增加产品系列、提高产品质量以及快速应对市场变化;同时,模块化后的系统更易于管理、维护以及升级。各个模块在设计和实现过程中通过直接物理链接或者间接事件驱动的方式进行互联。未来将继续完善该系统,协调各种技术的运行,形成一个完整的复合CSAM系统。然而,该系统的市场化必须考虑到其成本的问题。

  • 图25 CSAM系统示意图

  • Fig.25 Schematic diagram of CSAM system

  • 2.7 成本控制

  • CSAM成本的控制是一项受多种因素影响的系统性工程,会涉及一些技术层面的问题。它对一项新的技术能否被大众和市场接受而言是必不可少的,但目前有关这方面研究的文章并不是很多。实际上,在传统的CS系统中就已存在制造成本高的问题。在只考虑加工过程的条件下,其主要的生产成本在于压缩气体的成本。而对于CSAM,面临的成本问题可能会更为严峻。原因是当增材制造生产复杂大型零部件时,需要的制造时长更长,导致气体消耗也会更多。同时有可能受喷涂颗粒沉积效率的影响,导致更多的无效粉末沉积,造成材料成本的增加。为了降低成本,法国LERMPS实验室以及英国IFM创新制造中心[35]均在其使用的冷喷涂增材制造系统中专门设计了氦气回收循环系统。该系统在工作时会把停留在工作舱里的气体回收保存在低压储存容器里,在被转变为压缩的气源进行使用之前,对气体里的杂质进行过滤和净化。他们表示,在提高了粉末的沉积效率的情况下,使用循环氦气能更显著地节约制造成本。 Guo等[67]探索了喷涂过程中未沉积粉末颗粒再循环的可行性,对再循环粉末和原料粉末分别制备的涂层进行了比较,所得涂层表现出相似的致密微观结构(图26)。虽然他们的报道目前还属于初步探讨的阶段,不过可以预设,如果对制造部件的技术要求不是很高,或许可以在适当的情况下采用循环的粉末再制造。

  • 图26 用原粉末喷涂的涂层和采用回收利用的粉末喷涂的涂层[67]

  • Fig.26 CSed coating produced by origin powders and recycled powders [67]

  • 3 结论与展望

  • 作为一种新兴的增材制造方式,基于冷喷涂的增材制造为现代增材制造技术的应用开辟了新的途径。由于其对软金属材料的加工具有独特的优势,不仅在保持喷涂材料性质不变方面具有重要价值,而且在快速制备大型复杂结构材料的复合技术方面也将发挥巨大的作用,因此受到了越来越多来自学术界和工业界的关注。鉴于目前存在的诸多技术壁垒以及居高不下的制造成本问题,使得冷喷涂增材制造技术尚未得到广泛的应用。文中针对CSAM目前存在的一些关键技术问题以及未来发展的方向进行梳理与讨论,同时也提出了一些适用的解决方案,有助于推动冷喷涂增材制造技术的发展。

  • 对此进行了相应的讨论。其中包括建立喷涂专用喷嘴库,即应用不同材料、形状以及尺寸的喷嘴,提高喷嘴分辨率,延长其使用寿命等,从而提高CSAM过程中造型的能力;针对目前尚未有适合CSAM制造复杂工件的路径高效规划方法,可以通过提高机器人路径规划的能力,精确地控制喷枪运行轨迹以获得所需的涂层厚度和形貌;冷喷涂的制造特点及优化喷涂策略,旨在根据CSAM的特性提出适用的解决方案,从而避开CS的技术局限性;通常所需的涂层或者部件都是经过反复试验验证获得,因此应转变为以模拟与仿真为指导的方法,对喷涂的结果进行预判并对其参数进行优化,快速有效地指导生产制造进程,从而在最短的时间内获得最佳的喷涂效果;在实际过程中,CS的影响因素比较复杂,预测模型不能有效解决现实制造过程带来的影响和偏差,因此需要提高CSAM过程的监控和决策能力,使得其工艺实现标准化,制件的质量一致性得到保证,涂层的力学性能和几何精度不会出现偏差;在大多数应用中,单一使用CS技术无法获得具有最终性能和精度的工件,因此需要探索更多复合制造工艺的开发,采用模块化系统设计的方式将CSAM与减材制造以及激光等工艺进行耦合,在喷涂过程中及时调控喷涂的精度,从而实现以冷喷涂工艺为主,多制造加工技术为辅的现代化增材制造;控制CSAM的成本,从而逐渐被大众和市场接受。解决这些问题也是CSAM新发展的要求。

  • 随着未来CSAM技术和设备的发展,一方面可以覆盖更多的材料,另一方面可以实现复杂大型金属零部件的工业规模化生产。同时,其应用领域将不断扩大,将在航空航天、汽车、石油化工、国防工业等领域得到广泛的应用。

  • 参考文献

    • [1] LI W,YANG K,YIN S,et al.Solid-state additive manufac-turing and repairing by cold spraying:A review [J].Journal of Materials Science & Technology,2018,34(3):440-457.

    • [2] GIBSON I,ROSEN D,STUCKER B.Additive manufactur-ing technologies [M].Springer,2014.

    • [3] GIBSON I,ROSEN D,STUCKER B.Additive manufacturing technologies:3D printing,rapid prototyping,and direct digit-al manufacturing [M].Springer New York.2015:43-61.

    • [4] 郭志飞,张虎.增材制造技术的研究现状及其发展趋势 [J].机床与液压,2015,43(5):148-151.GUO Z F,ZHANG H.The research status and development trend of additive manufacturing technology[J].Machine Tool & Hydraulics,2015,43(5):148-151(in Chinese).

    • [5] YAN X,YIN S,CHEN C,et al.Fatigue strength improve-ment of selective laser melted Ti6Al4V using ultrasonic sur-face mechanical attrition [J].Materials Research Letters,2019,7(8):327-333.

    • [6] FRAZIER W.Metal additive manufacturing:A review[J].Journal of Materials Engineering and Performance.2014,23(6):1917-1928.

    • [7] DEBROY T,MUKHERJEE T,MILEWSKI J,et al.Scientif-ic,technological and economic issues in metal printing and their solutions [J].Nature Materials,2019,18:1026-1032.

    • [8] YAN X,LUPOI R,WU H,et al.Effect of hot isostatic pressing(HIP)treatment on the compressive properties of Ti6Al4V lattice structure fabricated by selective laser melting [J].Materials Letters,2019,255:126537.

    • [9] DYKHUIZEN R,SMITH M.Gas dynamic principles of cold spray [J].Journal of Thermal Spray Technology,1998,7(2):205-212.

    • [10] 李长久.中国冷喷涂研究进展 [J].中国表面工程,2009,22(4):5-14.LI C J.Evolution of cold spray technology in China [J].China Surface Engineering,2009,22(4):5-14(in Chi-nese).

    • [11] 李文亚,张冬冬,黄春杰,等,冷喷涂技术在增材制造和修复再制造领域的应用研究现状 [J].焊接,2013,(4):2-8.LI W Y,ZHANG D D,HUANG C J,et al.Current research status of applications of cold spray in the field of additive manufacturing and repairing[J].Weding & Joining,2016,(4):2-8(in Chinese).

    • [12] RAOELISON R,VERDY C,LIAO H.Cold gas dynamic spray additive manufacturing today:Deposit possibilities,technological solutions and viable applications [J].Materials & Design,2017,133:266-287.

    • [13] YIN S,CAVALIERE P,ALDWELL B,et al.Cold spray additive manufacturing and repair:Fundamentals and appli-cations [J].Additive Manufacturing,2018,21:628-650.

    • [14] XIE X,CHEN C,MA Y,et al.Influence of annealing treat-ment on microstructure and magnetic properties of cold sprayed Ni-coated FeSiAl soft magnetic composite coating [J].Surface and Coatings Technology,2019,374:476-484.

    • [15] WANG Q,SPENCER K,BIRBILIS N,et al.The influence of ceramic particles on bond strength of cold spray composite coatings on AZ91 alloy substrate [J].Surface and Coatings Technology,2010,205:50-56.

    • [16] KING P,POOLE A,HORNE S,et al.Embedment of cop-per particles into polymers by cold spray [J].Surface and Coatings Technology,2013,216:60-67.

    • [17] AJDELSZTAJN L,SCHOENUNG M,JOSOIN B,et al.Cold spray deposition of nanocrystalline aluminum alloys [J].Met-allurgical and Materials Transactions A,2005,36:657-666.

    • [18] KANG H,KANG S.Tungsten/copper composite deposits produced by a cold spray [J].Scripta Materialia,2003,49:1169-1174.

    • [19] ASSADI H,KREYE H,GARTNER F,et al.Cold spraying-A materials perspective [J].Acta Materialia,2016,116:82-407.

    • [20] Impact Innovations-Your partner for cold spray and engi-neering,(n.d.).https:∥www.impact-innovations.com/en/coldgas/applications_en.html.

    • [21] Consumer Goods,(n.d.).https:∥www.titomic.com/con-sumer-goods.html.

    • [22] Brothers In Arms:These Robots Put A New Twist On 3D Printing-GE Reports,(n.d.).https:∥www.ge.com/re-ports/brothers-arms-robots-put-new-twist-3d-printing/.

    • [23] Industry Applications,SPEE3D.(2019).https:∥www.spee3d.com/industry-applications/.

    • [24] 张俊宝,史弼,宋洪伟.冷喷涂用复合陶瓷拉乌尔型喷嘴 [P].CN1939595A,2007.https:∥patents.google.com/patent/CN1939595A/pt.ZHANG J B,SHI B,SONG H W.Composite ceramic Raoul nozzle for cold spraying [P].CN1939595A,2007.https:∥ patents.google.com/patent/CN1939595A/pt(accessed A-pril 19,2020)(in Chinese).

    • [25] 深沼博隆.冷喷涂用喷嘴以及使用该冷喷涂用喷嘴的冷喷涂装置[ P ].CN102892926A,2013.https:∥patents.google.com/patent/CN102892926A/zh?oq = + CN + 102892926+.SHEN Z B L.Nozzle for cold spray,and cold spray device u-sing nozzle for cold spray [P],CN102892926A,2013.ht-tps:∥patents.google.com/patent/CN102892926A/zh?oq = +CN + 102892926 +(accessed April 19,2020)(in Chi-nese).

    • [26] KOTOBAN D,GRIGORIEV S,OKUNKOVA A,et al.In-fluence of a shape of single track on deposition efficiency of 316L stainless steel powder in cold spray [J].Surface and Coatings Technology,2017,309:951-958.

    • [27] WU H,XIE X,LIU M,et al.Stable layer-building strategy to enhance cold-spray-based additive manufacturing [J].Additive Manufacturing,2020,35:101356.

    • [28] TABBARA H,GU S,MCCARTEY D,et al.Study on process optimization of cold gas spraying [J].Journal of Thermal Spray Technology,2011,20:608-620.

    • [29] SUO X,LIU T,LI W,et al.Numerical study on the effect of nozzle dimension on particle distribution in cold spraying [J].Surface and Coatings Technology,2013,220:107-111.

    • [30] SOVA A,GRIGORIEV S,OKUNKOVA A,et al.Potential of cold gas dynamic spray as additive manufacturing technolo-gy [J].The International Journal of Advanced Manufacturing Technology,2013,69:2269-2278.

    • [31] DENG S.Programmation robotique hors-ligne et contrôle en temps réel des trajectoires:Développement d’ une extension logicielle de“Robotstudio”pour la projection thermique [D].2006.

    • [32] DENG S,CAI Z,FANG D,et al.Application of robot off-line programming in thermal spraying [J].Surface and Coat-ings Technology,2012,206:3875-3882.

    • [33] CAI Z.Programmation robotique en utilisant la méthode de maillage et la simulation thermique du procédé de la projec-tion thermique [D].2014.

    • [34] GADOW R,CANDEL A,FLORISTAN M.Optimized robot trajectory generation for thermal spraying operations and high quality coatings on free-form surface[J].Surface and Coat-ings Technology,2010,205(4):1074-1079.

    • [35] PATTISON J,CELOTTO S,MORGAN R,et al.Cold gas dynamic manufacturing:A non-thermal approach to freeform fabrication [J].International Journal of Machine Tools and Manufacture,2007,47:627-634.

    • [36] LYNCH M,GU W,El-WARDANY T,et al.Design and to-pology/shape structural optimisation for additively manufac-tured cold sprayed components [J].Virtual and Physical Prototyping,2013,8:213-231.

    • [37] CORMIER Y,DUPUIS P,JODOIN B,et al.Net shape fins for compact heat exchanger produced by cold spray [J].Jour-nal of Thermal Spray Technology,2013,22:1210-1221.

    • [38] CORMIER Y,DUPUIS P,JODOIN B,et al.Finite element analysis and failure mode characterization of pyramidal fin ar-rays produced by masked cold gas dynamic spray [J].Jour-nal of Thermal Spray Technology,2015,24:1549-1565.

    • [39] CORMIER Y,DUPUIS P,JODOIN B,et al.Mechanical properties of cold gas dynamic-sprayed near-net-shaped fin arrays [J].Journal of Thermal Spray Technology,2015,24:476-488.

    • [40] WU H,XIE X,LIU M,et al.A new approach to simulate coating thickness in cold spray [J].Surface and Coatings Technology,2020,382:125151.

    • [41] LI W Y,YIN S,WANG X F.Numerical investigations of the effect of oblique impact on particle deformation in cold spra-ying by the SPH method [J].Applied Surface Science,2010,256:3725-3734.

    • [42] LI W Y,ZHANG D.Modelling of impact behaviour of cold spray particles:Review [J].Surface Engineering,2014,30:299-308.

    • [43] ASSADI H,GÄRTNER F,STOLTENHOFF T,et al.Bond-ing mechanism in cold gas spraying [J].Acta Materialia,2003,51:4379-4394.

    • [44] LI W Y,LIAO H,LI C J,et al.On high velocity impact of micro-sized metallic particles in cold spraying [J].Applied Surface Science,2006,253:2852-2862.

    • [45] GRUJICIC M,ZHAO C L,DEROSSET W S,et al.Adiabat-ic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process [J].Materi-als & Design,2004,25:681-688.

    • [46] YIN S,WANG X,XU B,et al.Examination on the calcula-tion method for modeling the multi-particle impact process in cold spraying [J].Journal of Thermal Spray Technology,2010,19:1032-1041.

    • [47] RAOELISON R N,KOITHARA L L,COSTIL S,et al.Tur-bulences of the supersonic gas flow during cold spraying and their negative effects:A DNS CFD analysis coupled with ex-perimental observation and laser impulse high-speed shadow-graphs of the particles in-flight flow [J].International Jour-nal of Heat and Mass Transfer,2020,147:118894.

    • [48] BREUNINGER P,KRULL F,HUTTENLOCHNER K,et al.Microstructuring of steel surfaces via cold spraying with 316L particles for studying the particle-wall collision behavior [J].Surface and Coatings Technology,2019,379:125054.

    • [49] YIN S,WANG X,LI W,et al.Numerical study on the effect of substrate angle on particle impact velocity and nor-mal velocity component in cold gas dynamic spraying basedon CFD [J].Journal of Thermal Spray Technology,2010,9:1155-1162.

    • [50] YIN S,MEYER M,LI W,et al.Particle acceleration,and heat transfer in cold spray:A review [J].Journal of Thermal Spray Technology,2016,25:874-896.

    • [51] HANSBO A,NYLÉN P.Models for the simulation of spray deposition and robot motion optimization in thermal spraying of rotating objects [J].Surface and Coatings Technology,1999,122:191-201.

    • [52] CHEN C,XIE Y,VERDY C,et al.Numerical investigation of transient coating build-up and heat transfer in cold spray [J].Surface and Coatings Technology,2017,326:355-365.

    • [53] CAI Z,DENG S,LIAO H,et al.The effect of spray dis-tance and scanning step on the coating thickness uniformity in cold spray process [J].Journal of Thermal Spray Technolo-gy,2014,23:354-362.

    • [54] HOOF T V,FRADET G,PICHOT F,et al.Simulation of thermal spray coating on 3D objects:Numerical scheme and aeronautic test case [J].Journal of Thermal Spray Technolo-gy,2019,28:1867-1880.

    • [55] ZHANG Y,LI W,ZHANG C,et al.A spherical surface coating thickness model for a robotized thermal spray system [J].Robotics and Computer-Integrated Manufacturing,2019,59:297-304.

    • [56] YIN S,LIAO H L,WANG X F,Euler based finite element analysis on high velocity impact behaviour in cold spraying [J].Surface Engineering,2014,30:309-315.

    • [57] SONG X,NG K L,CHEA J,et al.Coupled Eulerian-La-grangian(CEL)simulation of multiple particle impact during metal cold spray process for coating porosity prediction [J].Surface and Coatings Technology,2020,385:125433.doi:10.1016/j.surfcoat.2020.125433.

    • [58] WANG Q,LUO X,TSUTSUMI S,et al.Measurement and analysis of cold spray residual stress using arbitrary Lagrang-ian-Eulerian method [J].Additive Manufacturing,2020,35:101296.

    • [59] COLIN F,EGLI R,LIN F Y.Computing a null divergence velocity field using smoothed particle hydrodynamics [J].Journal of Computational Physics,2006,217:680-692.

    • [60] BUI H H,SAKO K,FUKAGAWA R.Numerical simulation of soil-water interaction using smoothed particle hydrodynam-ics(SPH)method [J].Journal of Terramechanics,2007,44:339-346.

    • [61] CHEN C,XIE Y,VERDY C,et al.Modelling of coating thickness distribution and its application in offline program-ming software [J].Surface & Coatings Technology,2017,318:315-325.

    • [62] CAI Z,DENG S,LIAO H,et al.The effect of spray dis-tance and scanning step on the coating thickness uniformity in cold spray process [J].Journal of Thermal Spray Technolo-gy,2014,23:354-362.

    • [63] ORTIZ-FERNANDEZ R,JODOIN B.Hybrid additive manu-facturing technology:Induction heating cold spray—Part I:Fundamentals of deposition process [J].Journal of Thermal Spray Technology,2020,29(6):1-16.

    • [64] ORTIZ-FERNANDEZ R,JODOIN B.Hybrid additive manu-facturing technology:Induction heating cold spray—Part II:Coating mechanical properties [J].Journal of Thermal Spray Technology,2020,29(6):1-14.

    • [65] CHRISTOULIS D,GUETTA S,IRISSOU E,et al.Cold-spraying coupled to nano-pulsed Nd-YaG laser surface pre-treatment [J].Journal of Thermal Spray Technology,2010,19:1062-1073.

    • [66] KROMER R,COSTIL S,CORMIER J,et al.Laser surface patterning to enhance adhesion of plasma sprayed coatings [J].Surface and Coatings Technology,2015,278:171-182.

    • [67] GUO D.Economic potential of cold spraying MCrAlY coat-ings:Use of nitrogen and feasibility of powder recycling [C].ITSC 2019.https:∥asm.confex.com/asm/itsc19/webprogram/Paper46759.html.

  • 参考文献

    • [1] LI W,YANG K,YIN S,et al.Solid-state additive manufac-turing and repairing by cold spraying:A review [J].Journal of Materials Science & Technology,2018,34(3):440-457.

    • [2] GIBSON I,ROSEN D,STUCKER B.Additive manufactur-ing technologies [M].Springer,2014.

    • [3] GIBSON I,ROSEN D,STUCKER B.Additive manufacturing technologies:3D printing,rapid prototyping,and direct digit-al manufacturing [M].Springer New York.2015:43-61.

    • [4] 郭志飞,张虎.增材制造技术的研究现状及其发展趋势 [J].机床与液压,2015,43(5):148-151.GUO Z F,ZHANG H.The research status and development trend of additive manufacturing technology[J].Machine Tool & Hydraulics,2015,43(5):148-151(in Chinese).

    • [5] YAN X,YIN S,CHEN C,et al.Fatigue strength improve-ment of selective laser melted Ti6Al4V using ultrasonic sur-face mechanical attrition [J].Materials Research Letters,2019,7(8):327-333.

    • [6] FRAZIER W.Metal additive manufacturing:A review[J].Journal of Materials Engineering and Performance.2014,23(6):1917-1928.

    • [7] DEBROY T,MUKHERJEE T,MILEWSKI J,et al.Scientif-ic,technological and economic issues in metal printing and their solutions [J].Nature Materials,2019,18:1026-1032.

    • [8] YAN X,LUPOI R,WU H,et al.Effect of hot isostatic pressing(HIP)treatment on the compressive properties of Ti6Al4V lattice structure fabricated by selective laser melting [J].Materials Letters,2019,255:126537.

    • [9] DYKHUIZEN R,SMITH M.Gas dynamic principles of cold spray [J].Journal of Thermal Spray Technology,1998,7(2):205-212.

    • [10] 李长久.中国冷喷涂研究进展 [J].中国表面工程,2009,22(4):5-14.LI C J.Evolution of cold spray technology in China [J].China Surface Engineering,2009,22(4):5-14(in Chi-nese).

    • [11] 李文亚,张冬冬,黄春杰,等,冷喷涂技术在增材制造和修复再制造领域的应用研究现状 [J].焊接,2013,(4):2-8.LI W Y,ZHANG D D,HUANG C J,et al.Current research status of applications of cold spray in the field of additive manufacturing and repairing[J].Weding & Joining,2016,(4):2-8(in Chinese).

    • [12] RAOELISON R,VERDY C,LIAO H.Cold gas dynamic spray additive manufacturing today:Deposit possibilities,technological solutions and viable applications [J].Materials & Design,2017,133:266-287.

    • [13] YIN S,CAVALIERE P,ALDWELL B,et al.Cold spray additive manufacturing and repair:Fundamentals and appli-cations [J].Additive Manufacturing,2018,21:628-650.

    • [14] XIE X,CHEN C,MA Y,et al.Influence of annealing treat-ment on microstructure and magnetic properties of cold sprayed Ni-coated FeSiAl soft magnetic composite coating [J].Surface and Coatings Technology,2019,374:476-484.

    • [15] WANG Q,SPENCER K,BIRBILIS N,et al.The influence of ceramic particles on bond strength of cold spray composite coatings on AZ91 alloy substrate [J].Surface and Coatings Technology,2010,205:50-56.

    • [16] KING P,POOLE A,HORNE S,et al.Embedment of cop-per particles into polymers by cold spray [J].Surface and Coatings Technology,2013,216:60-67.

    • [17] AJDELSZTAJN L,SCHOENUNG M,JOSOIN B,et al.Cold spray deposition of nanocrystalline aluminum alloys [J].Met-allurgical and Materials Transactions A,2005,36:657-666.

    • [18] KANG H,KANG S.Tungsten/copper composite deposits produced by a cold spray [J].Scripta Materialia,2003,49:1169-1174.

    • [19] ASSADI H,KREYE H,GARTNER F,et al.Cold spraying-A materials perspective [J].Acta Materialia,2016,116:82-407.

    • [20] Impact Innovations-Your partner for cold spray and engi-neering,(n.d.).https:∥www.impact-innovations.com/en/coldgas/applications_en.html.

    • [21] Consumer Goods,(n.d.).https:∥www.titomic.com/con-sumer-goods.html.

    • [22] Brothers In Arms:These Robots Put A New Twist On 3D Printing-GE Reports,(n.d.).https:∥www.ge.com/re-ports/brothers-arms-robots-put-new-twist-3d-printing/.

    • [23] Industry Applications,SPEE3D.(2019).https:∥www.spee3d.com/industry-applications/.

    • [24] 张俊宝,史弼,宋洪伟.冷喷涂用复合陶瓷拉乌尔型喷嘴 [P].CN1939595A,2007.https:∥patents.google.com/patent/CN1939595A/pt.ZHANG J B,SHI B,SONG H W.Composite ceramic Raoul nozzle for cold spraying [P].CN1939595A,2007.https:∥ patents.google.com/patent/CN1939595A/pt(accessed A-pril 19,2020)(in Chinese).

    • [25] 深沼博隆.冷喷涂用喷嘴以及使用该冷喷涂用喷嘴的冷喷涂装置[ P ].CN102892926A,2013.https:∥patents.google.com/patent/CN102892926A/zh?oq = + CN + 102892926+.SHEN Z B L.Nozzle for cold spray,and cold spray device u-sing nozzle for cold spray [P],CN102892926A,2013.ht-tps:∥patents.google.com/patent/CN102892926A/zh?oq = +CN + 102892926 +(accessed April 19,2020)(in Chi-nese).

    • [26] KOTOBAN D,GRIGORIEV S,OKUNKOVA A,et al.In-fluence of a shape of single track on deposition efficiency of 316L stainless steel powder in cold spray [J].Surface and Coatings Technology,2017,309:951-958.

    • [27] WU H,XIE X,LIU M,et al.Stable layer-building strategy to enhance cold-spray-based additive manufacturing [J].Additive Manufacturing,2020,35:101356.

    • [28] TABBARA H,GU S,MCCARTEY D,et al.Study on process optimization of cold gas spraying [J].Journal of Thermal Spray Technology,2011,20:608-620.

    • [29] SUO X,LIU T,LI W,et al.Numerical study on the effect of nozzle dimension on particle distribution in cold spraying [J].Surface and Coatings Technology,2013,220:107-111.

    • [30] SOVA A,GRIGORIEV S,OKUNKOVA A,et al.Potential of cold gas dynamic spray as additive manufacturing technolo-gy [J].The International Journal of Advanced Manufacturing Technology,2013,69:2269-2278.

    • [31] DENG S.Programmation robotique hors-ligne et contrôle en temps réel des trajectoires:Développement d’ une extension logicielle de“Robotstudio”pour la projection thermique [D].2006.

    • [32] DENG S,CAI Z,FANG D,et al.Application of robot off-line programming in thermal spraying [J].Surface and Coat-ings Technology,2012,206:3875-3882.

    • [33] CAI Z.Programmation robotique en utilisant la méthode de maillage et la simulation thermique du procédé de la projec-tion thermique [D].2014.

    • [34] GADOW R,CANDEL A,FLORISTAN M.Optimized robot trajectory generation for thermal spraying operations and high quality coatings on free-form surface[J].Surface and Coat-ings Technology,2010,205(4):1074-1079.

    • [35] PATTISON J,CELOTTO S,MORGAN R,et al.Cold gas dynamic manufacturing:A non-thermal approach to freeform fabrication [J].International Journal of Machine Tools and Manufacture,2007,47:627-634.

    • [36] LYNCH M,GU W,El-WARDANY T,et al.Design and to-pology/shape structural optimisation for additively manufac-tured cold sprayed components [J].Virtual and Physical Prototyping,2013,8:213-231.

    • [37] CORMIER Y,DUPUIS P,JODOIN B,et al.Net shape fins for compact heat exchanger produced by cold spray [J].Jour-nal of Thermal Spray Technology,2013,22:1210-1221.

    • [38] CORMIER Y,DUPUIS P,JODOIN B,et al.Finite element analysis and failure mode characterization of pyramidal fin ar-rays produced by masked cold gas dynamic spray [J].Jour-nal of Thermal Spray Technology,2015,24:1549-1565.

    • [39] CORMIER Y,DUPUIS P,JODOIN B,et al.Mechanical properties of cold gas dynamic-sprayed near-net-shaped fin arrays [J].Journal of Thermal Spray Technology,2015,24:476-488.

    • [40] WU H,XIE X,LIU M,et al.A new approach to simulate coating thickness in cold spray [J].Surface and Coatings Technology,2020,382:125151.

    • [41] LI W Y,YIN S,WANG X F.Numerical investigations of the effect of oblique impact on particle deformation in cold spra-ying by the SPH method [J].Applied Surface Science,2010,256:3725-3734.

    • [42] LI W Y,ZHANG D.Modelling of impact behaviour of cold spray particles:Review [J].Surface Engineering,2014,30:299-308.

    • [43] ASSADI H,GÄRTNER F,STOLTENHOFF T,et al.Bond-ing mechanism in cold gas spraying [J].Acta Materialia,2003,51:4379-4394.

    • [44] LI W Y,LIAO H,LI C J,et al.On high velocity impact of micro-sized metallic particles in cold spraying [J].Applied Surface Science,2006,253:2852-2862.

    • [45] GRUJICIC M,ZHAO C L,DEROSSET W S,et al.Adiabat-ic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process [J].Materi-als & Design,2004,25:681-688.

    • [46] YIN S,WANG X,XU B,et al.Examination on the calcula-tion method for modeling the multi-particle impact process in cold spraying [J].Journal of Thermal Spray Technology,2010,19:1032-1041.

    • [47] RAOELISON R N,KOITHARA L L,COSTIL S,et al.Tur-bulences of the supersonic gas flow during cold spraying and their negative effects:A DNS CFD analysis coupled with ex-perimental observation and laser impulse high-speed shadow-graphs of the particles in-flight flow [J].International Jour-nal of Heat and Mass Transfer,2020,147:118894.

    • [48] BREUNINGER P,KRULL F,HUTTENLOCHNER K,et al.Microstructuring of steel surfaces via cold spraying with 316L particles for studying the particle-wall collision behavior [J].Surface and Coatings Technology,2019,379:125054.

    • [49] YIN S,WANG X,LI W,et al.Numerical study on the effect of substrate angle on particle impact velocity and nor-mal velocity component in cold gas dynamic spraying basedon CFD [J].Journal of Thermal Spray Technology,2010,9:1155-1162.

    • [50] YIN S,MEYER M,LI W,et al.Particle acceleration,and heat transfer in cold spray:A review [J].Journal of Thermal Spray Technology,2016,25:874-896.

    • [51] HANSBO A,NYLÉN P.Models for the simulation of spray deposition and robot motion optimization in thermal spraying of rotating objects [J].Surface and Coatings Technology,1999,122:191-201.

    • [52] CHEN C,XIE Y,VERDY C,et al.Numerical investigation of transient coating build-up and heat transfer in cold spray [J].Surface and Coatings Technology,2017,326:355-365.

    • [53] CAI Z,DENG S,LIAO H,et al.The effect of spray dis-tance and scanning step on the coating thickness uniformity in cold spray process [J].Journal of Thermal Spray Technolo-gy,2014,23:354-362.

    • [54] HOOF T V,FRADET G,PICHOT F,et al.Simulation of thermal spray coating on 3D objects:Numerical scheme and aeronautic test case [J].Journal of Thermal Spray Technolo-gy,2019,28:1867-1880.

    • [55] ZHANG Y,LI W,ZHANG C,et al.A spherical surface coating thickness model for a robotized thermal spray system [J].Robotics and Computer-Integrated Manufacturing,2019,59:297-304.

    • [56] YIN S,LIAO H L,WANG X F,Euler based finite element analysis on high velocity impact behaviour in cold spraying [J].Surface Engineering,2014,30:309-315.

    • [57] SONG X,NG K L,CHEA J,et al.Coupled Eulerian-La-grangian(CEL)simulation of multiple particle impact during metal cold spray process for coating porosity prediction [J].Surface and Coatings Technology,2020,385:125433.doi:10.1016/j.surfcoat.2020.125433.

    • [58] WANG Q,LUO X,TSUTSUMI S,et al.Measurement and analysis of cold spray residual stress using arbitrary Lagrang-ian-Eulerian method [J].Additive Manufacturing,2020,35:101296.

    • [59] COLIN F,EGLI R,LIN F Y.Computing a null divergence velocity field using smoothed particle hydrodynamics [J].Journal of Computational Physics,2006,217:680-692.

    • [60] BUI H H,SAKO K,FUKAGAWA R.Numerical simulation of soil-water interaction using smoothed particle hydrodynam-ics(SPH)method [J].Journal of Terramechanics,2007,44:339-346.

    • [61] CHEN C,XIE Y,VERDY C,et al.Modelling of coating thickness distribution and its application in offline program-ming software [J].Surface & Coatings Technology,2017,318:315-325.

    • [62] CAI Z,DENG S,LIAO H,et al.The effect of spray dis-tance and scanning step on the coating thickness uniformity in cold spray process [J].Journal of Thermal Spray Technolo-gy,2014,23:354-362.

    • [63] ORTIZ-FERNANDEZ R,JODOIN B.Hybrid additive manu-facturing technology:Induction heating cold spray—Part I:Fundamentals of deposition process [J].Journal of Thermal Spray Technology,2020,29(6):1-16.

    • [64] ORTIZ-FERNANDEZ R,JODOIN B.Hybrid additive manu-facturing technology:Induction heating cold spray—Part II:Coating mechanical properties [J].Journal of Thermal Spray Technology,2020,29(6):1-14.

    • [65] CHRISTOULIS D,GUETTA S,IRISSOU E,et al.Cold-spraying coupled to nano-pulsed Nd-YaG laser surface pre-treatment [J].Journal of Thermal Spray Technology,2010,19:1062-1073.

    • [66] KROMER R,COSTIL S,CORMIER J,et al.Laser surface patterning to enhance adhesion of plasma sprayed coatings [J].Surface and Coatings Technology,2015,278:171-182.

    • [67] GUO D.Economic potential of cold spraying MCrAlY coat-ings:Use of nitrogen and feasibility of powder recycling [C].ITSC 2019.https:∥asm.confex.com/asm/itsc19/webprogram/Paper46759.html.

  • 手机扫一扫看