- 表面工程研究 -
en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

李成新(1974—),男(汉),教授,博士;研究方向:防护与功能涂层;E-mail:licx@mail.xjtu.edu.cn

中图分类号:TG174.44

文献标识码:A

文章编号:1007-9289(2020)02-0149-11

DOI:10.11933/j.issn.1007-9289.20191118001

参考文献 1
SCHOPPHOVEN T,GASSER A,WISSENBACH K.Inves-tigations on ultra high-speed laser material deposition as alter-native for hard chrome plating and thermal spraying [J].Journal of Laser Applications,2016,28(5):0225011-9.
参考文献 2
SCHOPPHOVEN T,GASSER A,BACKES G.EHLA:Ex-treme high-speed laser material deposition-economical and ef-fective protection against corrosion and wear[J].Laser Tech-nik Journal,2017,4:26-29.
参考文献 3
李俐群,申发明,周远东,等.超高速激光熔覆与常规激光熔覆431不锈钢涂层微观组织和耐蚀性对比研究[J].中国激光,2019,46(10):174-183.LI L Q,SHEN F M,ZHOU Y D,et al.Microstructure and corrosion resistance analysis of 431 stainless steel coating pre-pared by extreme high speed laser cladding and conventional laser cladding [J].Chinese Journal of Lasers,2019,46(10):174-183(in Chinese).
参考文献 4
LI L Q,SHEN F M,ZHOU Y D,et al.Comparative study of stainless steel AISI 431 coatings prepared by extreme high-speed and conventional laser cladding[J].Journal of Laser Applications,2019,31(4):042009.
参考文献 5
王豫跃,牛强,杨冠军,等.超高速激光熔覆技术绿色制造耐蚀抗磨涂层[J].材料研究与应用,2019,13(3):165-172.WANG Y Y,NIU Q,YANG G J,et al.Investigations on corrosion-resestant and wear-resistant coatings environmental-friendly manufactured by a novel super-high efficient laser cladding[J].Materials Research and Application,2019,13(3):165-172(in Chinese).
参考文献 6
李岩,白瑞兴,娄丽艳,等.1.8kW 高速激光熔覆铁基合金工艺与组织结构[C]∥ 第二十一届国际热喷涂研讨会暨第二十二届全国热喷涂年会,中国天津,2018.LI Y,BAI R X,LOU L Y,et al.Microstructure of ferrous alloy coatings deposited by 1.8kW high speed laser cladding [C]∥International Thermal Spraying Seminar 2018 and Chi-na National Thermal Spraying Conference 2018,Tianjin Chi-na,2018(in Chinese).
参考文献 7
娄丽艳,李成新,张煜,等.低功率超高速激光熔覆FeCr合金薄涂层微观结构与表面形貌演化[J].燕山大学学报,2020,44(2):116-124.LOU L Y,LI C X,ZHANG Y,et al.Microstructure and surface morphology evolution of FeCr alloy thin coatings de-posited by ultra-high speed laser cladding with low laser pow-er[J].Journal of Yanshan University,2020,44(2):116-124(in Chinese).
参考文献 8
澹台凡亮,田洪芳,陈峰,等.高速激光熔覆在27SiMn液压支架立柱上的应用探讨[J].新技术新工艺,2019,3:52-54.TANTAI F L,TIAN H F,CHEN F,et al.Discussion on ap-plication of high-speed laser cladding on 27SiMn hydraulic support column[J].New Technology & New Process,2019,3:52-54(in Chinese).
参考文献 9
王先龙,张维林,侯军,等.超高速激光熔覆在采煤机齿轮上应用研究[J].焊接与切割,2020,7:22-23.WANG X L,ZHANG W L,HOU J,et al.Application of ul-tra high speed laser cladding on coal-mining machine gears [J].Welding & Cutting,2020,7:22-23(in Chinese).
参考文献 10
SCHOPPHOVEN T,SCHLEIFENBAUM J H,THARMAKU-LASINGAM S,et al.Setting sights on a 3D process[J].Photonics Views,2019,16(5):64-68.
参考文献 11
王开明,雷永平,符寒光,等.功率对激光熔覆镍基WC涂层组织与硬度的影响 [J].稀有金属材料与工程,2017,46:3474-3478.WANG K M,LEI Y P,FU H G,et al.Effect of power on microstructure and hardness of Ni-based WC coating by laser cladding [J].Rare Metal Materials and Engineering,2017,46:3474-3478(in Chinese).
参考文献 12
李福泉,冯鑫友,陈彦宾.WC 含量对 WC/Ni60A 激光熔覆层微观组织的影响[J].中国激光,2016,43(4):117-123.LI F Q,FENG X Y,CHEN Y B.Influence of WC content on microstructure of WC/Ni60A laser cladding layer [J].Chinese Journal of Lasers,2016,43(4):117-123(in Chi-nese).
参考文献 13
SHU D,LI Z G,ZHANG K,ed al.In situ synthesized high colume fraction WC reinforced Ni-based coating by laser clad-ding[J].Materials Letters,2017,195:178-181.
参考文献 14
LEUNDA J,SANZ C,SORIANO C.Laser cladding strate-gies for producing WC reinforced NiCr coatings inside twin barrels [J].Surface & Coatings Technology,2016,307:720-727.
参考文献 15
ORTIZ A,GARCíA A,CADENAS M,et al.WC particles distribution model in the cross-section of laser cladded NiCrBSi plus WC coatings,for different wt% WC[J].Sur-face & Coatings Technology,2017,324:298-306.
参考文献 16
HOFMAN J T,DE LANGE D F,PATHIRAJ B,et al.FEM modeling and experimental verification for dilution control in laser cladding[J].Journal of Materials Processing Technolo-gy,2011,211:187-196.
参考文献 17
SONG B,HUSSAIN T,VOISEY K T.Laser cladding of Ni50Cr:a parameter and dilution study[J].Physics Proce-dia,2016,83:706-715.
参考文献 18
杨二娟,李勇,李巍,等.WC 含量对激光熔覆 NiCrBSi-WC 复合涂层显微结构及力学性能的影响[J].表面技术,2019,48(9):238-244.YANG E J,LI Y,LI W,et al.Effect of WC particle content on microstructure and mechanical properties of laser cladded NiCrBSi-WC composite coating [J].Surface Technology,2019,48(9):238-244(in Chinese).
参考文献 19
上官绪超,赵运才,徐颖,等.激光功率对WC颗粒增强铁基复合涂层摩擦学性能的影响 [J].金属热处理,2018,43(3):56-61.SHANGGUAN X C,ZHAO Y C,XU Y,et al.Effect of la-ser power on tribological properties of WC particles reinforced iron-based composite coating[J].Heat Treatment of Metals,2018,43(3):56-61(in Chinese).
参考文献 20
陈希章,胡科,袁其兵.激光熔敷原位合成WC增强铁基复合涂层的组织和性能[J].中国表面工程,2016,29(4):118-124.CHEN X Z,HU K,YUAN Q B.Microstructure and perform-ance of WC reinforced Fe-based composite coating synthe-sized in-situ produced by laser cladding[J].China Surface Engineering,2016,29(4):118-124(in Chinese).
参考文献 21
ZHOU S,ZENG X,HU Q,et al.Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization [J].Applied Surface Science,2008,255:1646-1653.
参考文献 22
LEE C M,PARK H,YOO J,et al.Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC+ NiCr[J].Applied Surface Science,2015,345:286-294.
参考文献 23
ZHOU S,HUANG Y,ZENG X.A study of Ni-based WC composite coatings by laser induction hybrid rapid cladding with elliptical spot[J].Applied Surface Science,2008,254(10):3110-3119.
参考文献 24
SUN N,SHAN H,ZHOU H,et al.Friction and wear behav-iors of compacted graphite iron with different biomimetic units fabricated by laser cladding [J].Applied Surface Science,2012,258:7699.
参考文献 25
WAN M Q,SHI J,LEI L,et al.A comparative study of the microstructure,mechanical properties and corrosion resist-ance of Ni-or Fe-based composite coatings by laser cladding [J].Journal of Materials Engineering and Performance,2018,27:2844.
参考文献 26
LI B,SHEN Y F.Ti-Cu flame-retardant modified layer pre-pared by friction stir processing on surface of TC4 Ti alloy [J].The Chinese Journal of Nonferrous Metals,2018,28(3):435-445.
参考文献 27
LI B,DING R D,SHEN Y F,et al.Preparation of Ti-Cr and Ti-Cu flame-retardant coatings on Ti-6Al-4V using a high-energy mechanical alloying method:A preliminary re-search[J].Materials & Design,2012,35:25-36.
参考文献 28
WANG F.Direct laser fabrication of Ti-25V-15Cr-2Al-0.2C burn-resistant titanium alloy[J].Metallurgical and Materials Transactions A,2012,43A:677-686.
参考文献 29
WANG Q M,WU Y N,GUO M H,et al.Ion-plated Al-O-N and Cr-O-N films on Ni-base superalloys as diffusion barriers [J].Surface & Coating Technology,2005,197(1):68-76.
参考文献 30
WANG Z,FANG Q,LI J,et al.Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys [J].Journal of Materials Science and Technology,2018,34:349-354.
参考文献 31
TSAI K Y,TSAI M H,YEH J W.Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J].Acta Materialia,2013,61(13):4887-4897.
参考文献 32
杨迪,孟旭,赵越超.多主元高熵合金基复合材料的研究进展[J].热加工工艺,2019,48(16):29-33.YANG D,MENG X,ZHAO Y C.Research progress of multi-principal component high entropy alloy matrix compos-ites[J].Hot Working Technology,2019,48(16):29-33(in Chinese).
参考文献 33
DAROONPARVAR M,YAJID M A M,KAY C M,et al.Effects of Al2O3 diffusion barrier layer(including Y-contai-ning small oxide recipitates)and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100 ℃ [J].Corrosion Science,2018,144:13-34.
参考文献 34
ABOULKHAIR N T,EVERITT N M,ASHCROFT I,et al.Reducing porosity in AlSi10Mg parts processed by selective laser melting [J].Additive Manufacturing,2014,4:77-86.
参考文献 35
VISCUSI A,LEITAO C,RODRIGUES D M,et al.Laser beam welded joints of dissimilar heat treatable aluminium al-loys[J].Journal of Materials Processing Technology,2016,236:48-55.
参考文献 36
覃思思,曾归余,谭彦显,等.铝合金表面耐磨涂层的制备研究[J].兵器材料科学与工程,2016,39(2):91-94.QIN S S,ZENG G Y,TAN Y X,et al.Preparation of wear-resistant coating on aluminum alloy surface [J].Ordnance Material Science and Engineering,2016,39(2):91-94(in Chinese).
目录contents

    摘要

    新兴的超高速激光熔覆技术通过对熔覆头的精巧设计,可实现激光、粉末路径最佳耦合,使粉末在飞行空间熔化且基体表面仅形成微溶池,在保证冶金结合的同时,大幅提高熔覆效率及粉末利用率,可制备厚度<100 μm、稀释率< 5%的均匀薄涂层。 为进一步探索超高速激光熔覆涂层组织结构特点,扩展其应用范围,探讨了低功率下 4 种典型涂层的微观结构及性能。 结果表明:超高速激光熔覆可制备 120 ~ 500 μm,无气孔、裂纹的高质量涂层;涂层组织致密,结合区多为粗大柱状晶,表层区以细晶为主;基体熔化区可低至数微米,稀释率可低至 1%。 其中,镍基碳化钨涂层、铝合金耐磨涂层硬度明显高于基体;钛合金阻燃涂层在激光烧蚀后,烧蚀坑深度降低,热影响区减小;高熵合金阻扩散涂层预氧化后形成以 Al2O3 为主的微米厚氧化膜,在上述涂层作用下,基体性能均得到提升。

    Abstract

    By specially designing the cladding head, the optimal coupling of laser beam and powder flow could be achieved in the newly developed high speed laser cladding (HSLC) process. Using such head, the particles melt in flight while the surface of substrate forms a micro-melt pool, so that a coating with metallurgical bonding can be obtained due to the high deposition speeds and powder utilization rate. As a result, producing high quality coatings with thickness <100 μm and dilution <5% is possible by using HSLC. In order to characterize the microstructure of the HSLC coatings and expand its applications, four differ- ent coatings with low dilution ratio are fabricated and the microstructure and properties of the coatings were studied under a rela- tively low laser power. Results show that high-quality pore-and crack-free coatings with thickness of 120~ 500 μm are produced by HSLC. All coatings have compact structure with coarse columnar crystals around the interface and fine grains near the coating surface. The melt area of the substrate reaches a micrometer range, and the dilution rate is less than 1%. For the nickel-based WC coating and the wear resistance coating on aluminum alloys, the hardness of the coatings is much bigger than the that of sub- strate. For the burn resistant coating on titanium, the depth of the laser-melt hole and range of HAZ is significantly reduced. For the diffusion resistant coating on high entropy alloy, the oxide film (Al2O3) forms by pre-oxidation. Overall, the coatings with low dilution ratio prepared by HSLC exhibit good protection for the substates studied.

    关键词

    激光熔覆涂层热喷涂微观组织稀释率

  • 0 引言

  • 近年来德国弗劳恩霍夫激光技术研究所(Fraunhofer ILT) 与亚琛联合科技公司(ACunityGmbH)提出了超高速激光熔覆技术(High speed laser cladding technology, HSLC)[1-2],与传统激光熔覆不同,超高速激光熔覆通过对熔覆头的精巧设计,可调整激光焦平面与粉末焦平面的相对位置,以实现激光与粉末的最佳耦合。 在一定线能量输入下,大部分激光能量作用于粉末,粉末温度高于熔点,能够以液态形式注入熔池,熔覆涂层表面粗糙度低,粉末利用率可高达85%;仅少部分激光能量透过粉末束流作用于高速运动的基体表面,基体表面仅形成微熔池,快速凝固后得到与基体呈冶金结合的薄涂层,稀释率一般可低于5%。 同时,通过基体的高速运动与激光束运动的配合,熔覆速率可达到25~200 m/min,突破了传统熔覆的效率瓶颈。 而对于传统激光熔覆,激光能量大部分作用于基体,粉末利用率低,涂层稀释率高于10%,影响了涂层性能;熔覆速率一般低于2 m/min,效率较低。 因此,基于其技术优势,超高速激光熔覆可挑战制备对基体热影响小、结合强度高,厚度小于100 μm,稀释率小于5%的均匀薄涂层。

  • 基于这一新技术、新工艺,国内外学者开展了广泛研究。 在涂层组织结构及性能分析方面,哈尔滨工业大学与亚琛联合科技公司合作,分别采用传统和超高速激光熔覆工艺在27SiMn液压支架上制备了431 不锈钢耐蚀涂层。 结果表明,超高速激光熔覆涂层稀释率为4%,组织均匀细密,耐蚀性能优于传统激光熔覆涂层[3-4]。 王豫跃等[5]采用超高速激光熔覆制备了铁基SS431等涂层,表征了涂层界面质量、微观组织、力学性能及耐蚀性能,并与电镀铬涂层、传统激光熔覆涂层、热喷涂涂层进行了对比,结果表明超高速激光熔覆涂层表面成形好,内部组织结构致密,与基体结合强度高,性能优异。 西安交通大学李成新等[6-7]模拟了粉末粒子加速行为,确定了送粉轨迹与激光路径的耦合关系,并利用高速激光熔覆技术在45 钢上制备了FeCr合金薄涂层,分析了涂层的微观组织及表面形貌演化行为。 在涂层的工业应用方面,山东能源重装集团大族再制造有限公司[8] 采用超高速激光熔覆技术在27SiMn液压支架立柱上制备的熔覆涂层平整均匀,硬度、耐腐蚀性能及相对结合强度均达到甚至超过传统激光熔覆工艺,且相对结合强度远超电镀层。 西安煤矿机械有限公司[9] 将超高速激光熔覆应用于采煤机齿轮修复中,熔覆后工件温度仅67℃,有效控制了变形量。 荷兰的IHCVremac公司[10]采用超高速激光熔覆技术制备液压缸活塞杆的耐磨耐蚀涂层。 德国亚琛公司合作开发汽车刹车盘熔覆工艺。 目前,对于超高速激光熔覆的研究、应用主要集中于铁基合金耐磨、抗蚀涂层的研发及性能评价。

  • 经过近几年的发展,国内外学者已基本达成共识,超高速激光熔覆与传统激光熔覆相比,熔覆层与基体均为冶金结合,结合强度高,同时,两种工艺存在以下不同:① 超高速激光熔覆涂层稀释率显著低于传统激光熔覆,最低可达1%以下,基体熔化厚度可低于10 μm;② 超高速激光熔覆层厚度可低于50 μm;③ 超高速激光熔覆同轴送粉器使得激光能量大部分作用于粉末,粉末利用效率可超过85%;④ 通过调整粉末速度,超高速激光熔覆可实现360°全角度熔覆;⑤ 超高速激光熔覆涂层表面粗糙度不经重熔可降低至约10 μm;⑥ 超高速激光熔覆速度可超过1 m/s。超高速激光熔覆与热喷涂相比具有如下相同点:① 线速度都可达到1 m/s以上;② 涂层和熔覆层厚度都可低至50 μm以下;③ 飞行粒子都是在达到基体之前熔化或半熔化。 同时,两种工艺存在以下不同:① 超高速激光熔覆涂层与基体呈冶金结合,热喷涂涂层与基体之间以机械结合为主;② 超高激光熔覆基体表面存在微溶池,热喷涂基体不熔化,无熔池;③ 热喷涂的粒子速度可达1000 m/s,超高速激光熔覆粒子速度一般低于100 m/s;④ 热喷涂的残余应力和基体热影响远低于超高速激光熔覆。 综上所述,作为基于高速粉末沉积的绿色制造工艺,超高速激光熔覆具有显著的四高两低的特点:即涂层结合强度高、能量利用率高、粉末利用率高、熔覆效率高,对基体热影响低,基体稀释率低。 因此,该技术在制备对基体热影响低、结合强度高的优质薄涂层方面显示出了广阔的应用前景,其适用领域仍有待进一步研究。

  • 为探索超高速激光熔覆涂层的组织性能特点,扩展该技术应用范围,文中采用915 nm光纤输出半导体激光器及自主研制的环形同轴送粉喷嘴,在功率密度保持470~640 W/mm2 的低功率条件下,线速度为200~300 mm/s时,制备镍基碳化钨耐磨涂层、钛合金阻燃涂层、高熵合金阻扩散涂层及铝合金耐磨涂层4 种典型金属及金属基陶瓷涂层,分析低功率制备条件下涂层的微观结构及性能。

  • 1 试验

  • 1.1 试验材料

  • 基体材料分别为45 钢、TC4 钛合金、7075 铝合金、Inconel 718 高温合金,进行超高速激光熔覆试验前,对基体表面进行精磨处理,并采用丙酮清洗,去除表面油污。 熔覆材料分别选用He-genas LC-WC60-1 镍基WC粉末( 粒度50~100 μm),Cu金属粉末( 粒度~30 μm,纯度≥99.9%),Amdry 997 NiCoCrAlTaY粉末(Ni-23Co-20Cr-8.5Al-4.0Ta-0.6Y, 粒度~37 μm),CuAlNiCrFe高熵合金粉末( 粒度~70 μm) 及FeCr合金粉末(粒度35~55 μm)。 试验前对粉末进行烘干,温度150℃,时间30 min。

  • 1.2 涂层制备

  • 采用最大输出功率为2.5 kW的RFL-A2500D光纤输出半导体激光器,采用自行研制的粉末利用率超过85%的同轴送粉喷嘴进行熔覆,工艺参数范围如表1 所示。 其中,线速度为基体运动速度。 为防止加工过程中熔覆区域严重氧化, 钛合金及铝合金熔覆在氩气( 纯度≥99.99%,流量0.5 L/min)保护气氛中进行。

  • 1.3 结构表征与性能测试

  • 采用日立S-3400 型扫描电子显微镜观察涂层形貌与微观结构;Bruker D8 ADVANCE A25 型X射线衍射仪(XRD) 进行物相分析,扫描速度5°/min,角度范围10°~90°;HV-1000 显微硬度仪测定涂层显微硬度,试验载荷5 N,保压时间15 s。

  • 表1 超高速激光熔覆工艺参数

  • Table1 Parameters of HSLC process

  • 2 超高速激光熔覆典型涂层

  • 2.145 钢基体镍基WC复合耐磨涂层

  • 镍基WC涂层因耐磨性能优良、价格适中应用广泛[11-12]。 但是,Shu等[13-15]的研究表明,WC颗粒密度较大,熔覆过程中在重力作用下易偏聚于涂层/界面处,形成应力集中,使该区域脆性增大,产生裂纹等缺陷,耐磨要求更高的涂层顶部硬度反而没有明显提高,严重影响了涂层服役性能。

  • 采用超高速激光熔覆技术,探索制备了WC颗粒分布均匀,无气孔、裂纹等缺陷的镍基WC复合涂层。 基体材料为45 钢,粉末为HegenasLC-WC60-1,通过工艺参数调控,在激光功率1.5~2.2 kW,线速度250 mm/s,搭接率75%,送粉率0.25~0.5 g/s下制备了涂层厚度120~550 μm可控的涂层。

  • 如图1 所示,不同厚度的涂层组织致密,无明显气孔、无裂纹。 图中白色球形组织为WC颗粒,可知其在涂层内部分布较均匀,无明显偏析。图像法获取的涂层截面WC体积分数表明,不同厚度的涂层WC均为20%~30%。

  • 由图2 可知,WC颗粒与镍合金基体界面处形成了厚度约1 μm的反应层,表明WC颗粒与Ni基体之间为高强度冶金结合,在服役过程中可提高WC颗粒的附着力,使其在外力作用下不易脱落,有利于提升涂层耐磨性能。

  • 对垂直于界面方向的特征元素Ni、Fe进行线扫描,以550 μm厚涂层为例,EDS图谱见图3,可知Ni、Fe元素含量在过渡区内发生突变,过渡区范围小于3 μm。 因超高速激光熔覆基体熔化层极薄,难以采用几何方式精确计算稀释率,固采用成分稀释率计算方法[16-17],如式(1)所示:

  • 图1 不同厚度镍基WC复合涂层截面组织

  • Fig.1 Cross-section microstructure of nickel-based WC composite coatings with different thickness

  • 图2 Ni基体与WC界面反应产物显微结构

  • Fig.2 Microstructure of the interface between nickel-based matrix and WC particles

  • =ρ粉末 X涂层 -X粉末 ρ基体 X基体 -X涂层 +ρ粉末 X涂层 -X粉末
    (1)
  • 式中: ρ粉末 ρ基体 分别为粉末、基体的密度, X粉末 X基体 X涂层 分别为元素在粉末、基体、涂层中的质量分数。 对涂层中Fe元素含量进行EDS测量分析,根据式(1)计算可知,试验参数下涂层稀释率可小于1%。

  • 超高速激光熔覆制备的镍基WC复合涂层解决了传统激光熔覆金属基WC涂层易开裂的问题。 这是因为相较于传统激光熔覆,超高速激光熔覆速率高,基体热输入低,基体表面仅产生微小熔池,此试验参数下,基体熔化范围小于3 μm。 同时,超高速激光熔覆稀释率可小于1%,涂层厚度可低至数十微米,但激光焦点直径与传统熔覆焦点直径相当,达几毫米以上,相对于传统激光熔覆熔池,超高速激光熔覆熔池可近似为“准二维熔池”,熔池冷却速度可高于传统激光熔覆一个量级以上。 在较低的热作用与极快的冷却速度作用下,WC颗粒的溶解大幅减少。 因此,文中WC颗粒界面反应层仅约1 μm,较传统激光熔覆中3~7 μm厚的界面反应层大幅减小[18]。同时,WC溶解程度降低抑制了W2C、M7C3(M=Cr,Fe或Ni)[19-20] 等脆性相的生成,使得涂层组织均匀性提升。 另一方面,热输入降低,温度梯度降低,涂层基体间热应力减少,也降低了涂层开裂倾向[21-23]

  • 图3 镍基WC涂层元素分布

  • Fig.3 Element distribution along linear scanning direction of nickel-based WC composite coating

  • 以550 μm厚涂层为例,硬度分布见图4,基体45 钢硬度约220 HV0.5,涂层整体硬度高于基体。 由于WC颗粒弥散分布,涂层硬度不均匀,其中Ni基合金硬度约400 HV0.5,WC颗粒硬度约2200 HV0.5,可达基体硬度10 倍。 WC颗粒均匀分布的Ni基涂层,实现了软基体与硬质相的良好结合。 现有研究表明,在摩擦磨损中,软基体对硬质相起支撑作用,突出磨损表面的WC硬质颗粒起支撑载荷作用,在与对摩件接触、滑动的过程中硬质相磨削少,且可抵抗对磨件的压入深度,显著提升涂层耐磨性[24-25]

  • 图4 镍基WC涂层硬度分布

  • Fig.4 Microhardness distribution of nickel-based WC composite coating

  • 2.2 钛合金阻燃涂层

  • 现有研究表明,由于Cu导热性好、与氧的化学吸附热低,燃烧生成Ti-Cu低熔点共晶吸收热量,提高润滑效果等,Ti-Cu涂层可显著提升钛合金基体阻燃性能[26-27]。 文中采用超高速激光熔覆在TC4 钛合金表面熔覆Cu粉,基于Ti、Cu二元反应扩散和固溶-析出等行为,形成富含Ti2Cu等Ti-Cu中间相的Ti-Cu阻燃涂层。 为进一步提升涂层高温服役性能,在Ti-Cu涂层表面熔覆NiCoCrAlTaY粉末,制备以Cu为过渡层的Cu +NiCoCrAlTaY复合涂层。 其中,熔覆Cu粉时,激光功率1.5 kW,搭接率80%,为确保Cu粉熔化充分,线速度适当降低;熔覆NiCoCrAlTaY粉末时,激光功率2.5 kW,线速度293 mm/s,搭接率80%。

  • 复合涂层形貌见图5,由图可知,涂层组织致密,无气孔、裂纹等缺陷,涂层厚约280 μm。 由于冷却凝固的方向性,结合区晶粒沿垂直于结合界面方向生长为柱状组织,主要由Cu、Ti元素组成,如图5(b)所示。

  • 图5 Cu+NiCoCrAlTaY涂层截面形貌

  • Fig.5 Cross-section morphologies of Cu+NiCoCrAlTaY coating

  • 图6 涂层中Cu、Ni元素面分布及线分布图表明,Cu+NiCoCrAlTaY复合涂层包括两层,即表层镍基涂层, 约120 μm; 底层Cu涂层, 约160 μm。 通过图6(b)垂直于界面方向元素分布可知,沿线扫描方向,元素含量从基体到涂层表面连续变化。 Cu/Ni基涂层界面处,Cu、Ni元素含量突变;涂层/基体界面处由于基体熔化形成扩散区,Ti元素含量突变。 其中,扩散区主要由Ti、Cu元素组成,表明涂层与基体之间为冶金结合。 过渡区约20 μm,涂层稀释率较低。

  • 图6 Cu+NiCoCrAlTaY复合涂层元素分布

  • Fig.6 Elements distribution of Cu+NiCoCrAlTaY coating

  • 采用300 W和500 W连续激光(激光光斑1.8 mm)分别在TC4 基体、Cu +NiCoCrAlTaY涂层表面进行8 s和5 s的连续点烧蚀,见图7。 结果表明,在300 W激光作用下,基体及涂层烧蚀区域熔化,生成了熔融体和氧化物。 在500 W激光作用下,基体及涂层烧蚀后发生剧烈氧化、烧损,部分转化为飞溅损耗,表面出现了由类圆形盲孔及周围熔融体和氧化物构成的烧蚀坑。 在相同激光光斑下,烧蚀区域直径无明显差别,但在Cu+NiCoCrAlTaY复合涂层作用下,烧蚀坑深度明显降低,热影响区域范围明显减小,表明涂层具有一定阻燃性能。 主要是由于在Cu+NiCoCrAlTaY涂层作用下,燃烧产前沿形成致密的铝、铬氧化物薄膜,起到隔绝氧气作用,在厚度方向阻止燃烧扩散,阻碍涂层及基体的氧化和燃烧。当燃烧穿透Ni基涂层后,Cu涂层因Cu氧化物放热量低,生成的气相CuO逸出带走一定热量,形成Ti2Cu等低熔点共晶吸收局部微区热量等[28],起到减少热量累积、快速散热作用。 因此,在Cu及NiCoCrAlTaY涂层的双重保护下,该复合涂层起到一定阻燃作用。

  • 图7 激光烧蚀后TC4 基体及Cu+NiCoCrAlTaY涂层表面形貌

  • Fig.7 Surface morphology of TC4 substrate and Cu+NiCoCrAlTaY coating after laser spot melting

  • 2.3 CuAlNiCrFe高熵合金阻扩散涂层

  • 热障涂层在高温服役过程中粘结层/基体界面处元素扩散将导致涂层过早失效[29]。 而高熵合金受迟滞扩散效应影响,元素相互牵制扩散困难,同时晶格畸变降低元素扩散速度。 因此,高熵合金在高温服役下将延缓由元素扩散导致的失效进程,有利于涂层热稳定性提高[30-31]

  • 将超高速激光熔覆这一新技术与高熵合金结合, 进行表面改性涂层制备新尝试。 采用CuAlNiCrFe高熵合金粉末,在激光功率2.2 kW, 线速度260 mm/s,搭接率80%下,在Inconel718高温合金上制备了CuAlNiCrFe高熵合金阻扩散涂层。 由图8 XRD衍射图谱可知,不同于铸态粉末态的bcc结构,涂层主要由bcc和fcc双相组织构成。

  • 图8 CuAlNiCrFe高熵合金粉末、涂层及预氧化涂层XRD图谱

  • Fig.8 X-ray diffraction patterns of the deposited CuAlNiCrFe high entropy alloy powder and the coating as prepared and after pre-oxidation

  • 现有研究表明,激光熔覆可以显著降低喷涂类高熵合金涂层的气孔率[32]。 涂层微观形貌见图9,可知,有别于喷涂类涂层层状结构,高速激光熔覆制备的高熵合金涂层组织致密均匀,涂层厚度均匀,约150 μm,无气孔、裂纹等缺陷。

  • 图9(a) 中,通过垂直于界面方向涂层顶部到基体的元素分布可知,元素含量从基体到涂层表面连续变化,在结合界面位置,Al和Ni元素元素含量存在突变,过渡区约10 μm,涂层稀释率低于5%。 超高速激光熔覆相较于传统激光熔覆,由于熔覆和冷却速度更快,晶粒更小,且熔覆层表层、中部、底部差异进一步缩小,大部分为柱状晶,仅涂层顶部存在少量细小等轴晶。

  • 作为阻扩散涂层,CuAlNiCrFe高熵合金涂层在1050℃ 氩气氛围下(氧分压<10-3Pa)进行预氧化,在涂层表面形成一层致密氧化膜以阻挡元素扩散,提高涂层服役寿命。 预氧化2 h后,涂层微观组织形貌见图10。 由图10(a)可知,镀镍层及CuAlNiCrFe高熵合金涂层中间形成了一层连续均匀的黑色氧化膜,厚度约0.75 μm,致密、无孔隙。 由图10( b) 可知,氧化膜表面较为平整,无气孔、裂纹,因此,预氧化形成的氧化膜可起到阻止元素扩散的作用。 涂层EDS谱图见图11,结果表明,涂层预氧化制备的氧化膜以Al2O3 为主。 而Al2O3 具有较低的生长速率、较高的粘附强度,且组织致密,可在后续的服役过程中有效阻止元素扩散,进而抑制生长速率过快、无保护性的尖晶石氧化物的形成[33]

  • 图9 CuAlNiCrFe高熵合金涂层截面微观形貌

  • Fig.9 Cross-section microstructure of CuAlNiCrFe high entropy alloy coating

  • 图10 CuAlNiCrFe高熵合金涂层预氧化2 h后截面及表面微观形貌

  • Fig.10 Cross-section and topography of CuAlNiCrFe high entropy alloy coating after of 2 h pre-oxidation

  • 值得注意的是,预氧化后,涂层表面由于氧化膜形成而导致的Al元素扩散和消耗并没有改变高熵合金涂层的高熵状态。 由图8 XRD图谱所示,预氧化后涂层并未形成其他金属间化合物,仍保持fcc+bcc双相固溶体结构,即涂层仍具备高熵合金的迟滞扩散效应,确保了涂层优良的阻扩散性能。

  • 图11 CuAlNiCrFe高熵合金涂层预氧化后元素分布

  • Fig.11 Element distribution of CuAlNiCrFe high entropy alloy coating after pre-oxidation

  • 2.4 铝合金耐磨涂层

  • 铝合金对激光反射率高[34],在采用激光作为热源进行加工制造时,往往需要更高功率的激光器以熔化材料;同时在成形过程中,表面容易形成氧化膜,出现气孔、微裂纹等缺陷[35],影响涂层质量。 因此,相较于其他金属,铝合金的激光熔覆工艺难度较大。 基于超高速激光熔覆这一技术,通过工艺调控,使粉末充分熔化的同时,仅在铝合金基体表面形成微熔池,确保涂层质量。在激光功率2.4 kW,熔覆线速度200 mm/s,搭接率70%下, 采用FeCr合金粉末( 粉末粒度~40 μm)在7075 铝合金基体上制备了FeCr合金涂层,有效提升铝合金的耐磨性能。

  • 涂层截面微观形貌见图12, 涂层厚度约400 μm,组织致密,结合区域存在微小气孔。

  • 涂层/基体的EDS图谱如图13 所示。 由图13(a)可知,涂层中Fe、Cr元素分布均匀,7075铝合金中Al元素主要分布在基体中,因基体熔化而形成的过渡区很窄。 通过垂直于界面方向的元素分布图13( b) 可知,沿线扫描方向,Fe、Al、Cr元素含量从基体到涂层表面连续变化,涂层/基体界面处元素含量发生突变,形成的过渡区中Al元素质量分数约为72%,是熔覆层中Al元素含量近30 倍,表明涂层与基体之间为冶金结合。 而熔覆层靠近表面区域的元素组成与粉末材料基本一致,未检测到Al元素,表面该区域未被基体稀释,保持了其优良性能。 在此试验参数下,Al元素的扩散区域范围即过渡区约4 μm,涂层稀释率小于4%。 铝合金表面耐磨涂层制备的难点主要为铝合金表面氧化引起的涂层与基材结合力下降[36],而文中采用超高速激光熔覆制备的FeCr合金涂层与基体之间呈明显冶金结合,确保了结合强度,保证了涂层质量。

  • 图12 FeCr合金熔覆层截面形貌

  • Fig.12 Cross-section morphology of FeCr alloy coating

  • 图13 FeCr合金涂层元素分布

  • Fig.13 Element distribution of FeCr alloy coating

  • 涂层硬度分布见图14。 由图可知,基体硬度约145 HV0.5,涂层硬度明显高于基体,硬度分布较为均匀,约475 HV0.5,可有效提升铝合金基体耐磨性能。

  • 图14 FeCr合金涂层硬度分布

  • Fig.14 Microhardness distribution of FeCr alloy coating

  • 3 结论

  • 通过工件与激光束高速运动的有效匹配,分别在铝合金、钛合金、45 钢及Inconel 718 高温合金上制备了高质量的金属及金属基陶瓷复合涂层,在试验条件下,主要结论如下:

  • (1) 功率密度保持470~640 W/mm2 时,线速度可达250~500 mm/s,即超高速激光熔覆能在低功率条件下实现高效熔覆,能量利用率高。

  • (2) 基于调整激光、粉末焦平面相对位置获得激光、粉末最佳能量耦合这一技术优势,超高速激光熔覆可适用于铜、铝合金等热导率高、激光吸收率低的金属材料熔覆,能够制备陶瓷强化相颗粒分布均匀的金属基陶瓷复合涂层,工艺简单,适用范围广。

  • (3) 镍基WC涂层过渡区小于3 μm,铝合金耐磨涂层过渡区约4 μm,即超高速激光熔覆基体熔化区域可低至数个微米,基体受热影响小,在保证高强度冶金结合的同时,涂层稀释率可低至1%。

  • (4) 超高速激光熔覆可制备表面光洁,无气孔、贯通裂纹的高质量涂层;不同体系的涂层均具有致密组织,基体与涂层结合区域多为粗大的柱状晶,靠近涂层表面区域以细小晶粒为主。

  • (5) 镍基碳化钨涂层、铝合金表面FeCr合金涂层整体硬度明显高于基体,有效提升了基体耐磨性;钛合金表面Cu+NiCoCrAlTaY阻燃涂层激光烧蚀后,烧蚀坑深度明显降低,热影响区显著减小,起到一定阻燃作用;CuAlNiCrFe高熵合金阻扩散涂层预氧化后形成了以Al2O3 为主的0.75 μm氧化膜,且保持高熵状态,可有效阻止元素扩散。

  • 4 展望

  • (1) 与传统激光熔覆相比,超高速激光熔覆涂层厚度可低至数十微米,激光焦点直径达几个毫米以上,相对于传统激光熔覆熔池,超高速激光熔覆熔池可近似为“准二维熔池”,冷却速度远高于传统熔覆,熔池的非平衡凝固行为是控制熔覆层质量的关键。 通过数值模拟方法,求解熔覆过程熔池温度场、流场、应力场的分布,实现涂层组织性能的控制,将是该技术今后重点研究的方向。

  • (2) 受到现有2~6 kW量级激光器光斑直径的限制,现有超高速激光熔覆技术单位时间内熔覆面积无法取得进一步突破。 通过光学整形技术,实现从圆光斑到线光斑的控制输出,可突破现有光斑直径的限制。 在相同功率密度下,随着大功率激光器的研发,实现高功率密度超长线光斑输出,熔覆效率可较现有超高速激光熔覆效率提升10 倍及以上。 因此,超高速线光斑激光熔覆将成为今后高速激光熔覆发展的必然趋势。

  • 参考文献

    • [1] SCHOPPHOVEN T,GASSER A,WISSENBACH K.Inves-tigations on ultra high-speed laser material deposition as alter-native for hard chrome plating and thermal spraying [J].Journal of Laser Applications,2016,28(5):0225011-9.

    • [2] SCHOPPHOVEN T,GASSER A,BACKES G.EHLA:Ex-treme high-speed laser material deposition-economical and ef-fective protection against corrosion and wear[J].Laser Tech-nik Journal,2017,4:26-29.

    • [3] 李俐群,申发明,周远东,等.超高速激光熔覆与常规激光熔覆431不锈钢涂层微观组织和耐蚀性对比研究[J].中国激光,2019,46(10):174-183.LI L Q,SHEN F M,ZHOU Y D,et al.Microstructure and corrosion resistance analysis of 431 stainless steel coating pre-pared by extreme high speed laser cladding and conventional laser cladding [J].Chinese Journal of Lasers,2019,46(10):174-183(in Chinese).

    • [4] LI L Q,SHEN F M,ZHOU Y D,et al.Comparative study of stainless steel AISI 431 coatings prepared by extreme high-speed and conventional laser cladding[J].Journal of Laser Applications,2019,31(4):042009.

    • [5] 王豫跃,牛强,杨冠军,等.超高速激光熔覆技术绿色制造耐蚀抗磨涂层[J].材料研究与应用,2019,13(3):165-172.WANG Y Y,NIU Q,YANG G J,et al.Investigations on corrosion-resestant and wear-resistant coatings environmental-friendly manufactured by a novel super-high efficient laser cladding[J].Materials Research and Application,2019,13(3):165-172(in Chinese).

    • [6] 李岩,白瑞兴,娄丽艳,等.1.8kW 高速激光熔覆铁基合金工艺与组织结构[C]∥ 第二十一届国际热喷涂研讨会暨第二十二届全国热喷涂年会,中国天津,2018.LI Y,BAI R X,LOU L Y,et al.Microstructure of ferrous alloy coatings deposited by 1.8kW high speed laser cladding [C]∥International Thermal Spraying Seminar 2018 and Chi-na National Thermal Spraying Conference 2018,Tianjin Chi-na,2018(in Chinese).

    • [7] 娄丽艳,李成新,张煜,等.低功率超高速激光熔覆FeCr合金薄涂层微观结构与表面形貌演化[J].燕山大学学报,2020,44(2):116-124.LOU L Y,LI C X,ZHANG Y,et al.Microstructure and surface morphology evolution of FeCr alloy thin coatings de-posited by ultra-high speed laser cladding with low laser pow-er[J].Journal of Yanshan University,2020,44(2):116-124(in Chinese).

    • [8] 澹台凡亮,田洪芳,陈峰,等.高速激光熔覆在27SiMn液压支架立柱上的应用探讨[J].新技术新工艺,2019,3:52-54.TANTAI F L,TIAN H F,CHEN F,et al.Discussion on ap-plication of high-speed laser cladding on 27SiMn hydraulic support column[J].New Technology & New Process,2019,3:52-54(in Chinese).

    • [9] 王先龙,张维林,侯军,等.超高速激光熔覆在采煤机齿轮上应用研究[J].焊接与切割,2020,7:22-23.WANG X L,ZHANG W L,HOU J,et al.Application of ul-tra high speed laser cladding on coal-mining machine gears [J].Welding & Cutting,2020,7:22-23(in Chinese).

    • [10] SCHOPPHOVEN T,SCHLEIFENBAUM J H,THARMAKU-LASINGAM S,et al.Setting sights on a 3D process[J].Photonics Views,2019,16(5):64-68.

    • [11] 王开明,雷永平,符寒光,等.功率对激光熔覆镍基WC涂层组织与硬度的影响 [J].稀有金属材料与工程,2017,46:3474-3478.WANG K M,LEI Y P,FU H G,et al.Effect of power on microstructure and hardness of Ni-based WC coating by laser cladding [J].Rare Metal Materials and Engineering,2017,46:3474-3478(in Chinese).

    • [12] 李福泉,冯鑫友,陈彦宾.WC 含量对 WC/Ni60A 激光熔覆层微观组织的影响[J].中国激光,2016,43(4):117-123.LI F Q,FENG X Y,CHEN Y B.Influence of WC content on microstructure of WC/Ni60A laser cladding layer [J].Chinese Journal of Lasers,2016,43(4):117-123(in Chi-nese).

    • [13] SHU D,LI Z G,ZHANG K,ed al.In situ synthesized high colume fraction WC reinforced Ni-based coating by laser clad-ding[J].Materials Letters,2017,195:178-181.

    • [14] LEUNDA J,SANZ C,SORIANO C.Laser cladding strate-gies for producing WC reinforced NiCr coatings inside twin barrels [J].Surface & Coatings Technology,2016,307:720-727.

    • [15] ORTIZ A,GARCíA A,CADENAS M,et al.WC particles distribution model in the cross-section of laser cladded NiCrBSi plus WC coatings,for different wt% WC[J].Sur-face & Coatings Technology,2017,324:298-306.

    • [16] HOFMAN J T,DE LANGE D F,PATHIRAJ B,et al.FEM modeling and experimental verification for dilution control in laser cladding[J].Journal of Materials Processing Technolo-gy,2011,211:187-196.

    • [17] SONG B,HUSSAIN T,VOISEY K T.Laser cladding of Ni50Cr:a parameter and dilution study[J].Physics Proce-dia,2016,83:706-715.

    • [18] 杨二娟,李勇,李巍,等.WC 含量对激光熔覆 NiCrBSi-WC 复合涂层显微结构及力学性能的影响[J].表面技术,2019,48(9):238-244.YANG E J,LI Y,LI W,et al.Effect of WC particle content on microstructure and mechanical properties of laser cladded NiCrBSi-WC composite coating [J].Surface Technology,2019,48(9):238-244(in Chinese).

    • [19] 上官绪超,赵运才,徐颖,等.激光功率对WC颗粒增强铁基复合涂层摩擦学性能的影响 [J].金属热处理,2018,43(3):56-61.SHANGGUAN X C,ZHAO Y C,XU Y,et al.Effect of la-ser power on tribological properties of WC particles reinforced iron-based composite coating[J].Heat Treatment of Metals,2018,43(3):56-61(in Chinese).

    • [20] 陈希章,胡科,袁其兵.激光熔敷原位合成WC增强铁基复合涂层的组织和性能[J].中国表面工程,2016,29(4):118-124.CHEN X Z,HU K,YUAN Q B.Microstructure and perform-ance of WC reinforced Fe-based composite coating synthe-sized in-situ produced by laser cladding[J].China Surface Engineering,2016,29(4):118-124(in Chinese).

    • [21] ZHOU S,ZENG X,HU Q,et al.Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization [J].Applied Surface Science,2008,255:1646-1653.

    • [22] LEE C M,PARK H,YOO J,et al.Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC+ NiCr[J].Applied Surface Science,2015,345:286-294.

    • [23] ZHOU S,HUANG Y,ZENG X.A study of Ni-based WC composite coatings by laser induction hybrid rapid cladding with elliptical spot[J].Applied Surface Science,2008,254(10):3110-3119.

    • [24] SUN N,SHAN H,ZHOU H,et al.Friction and wear behav-iors of compacted graphite iron with different biomimetic units fabricated by laser cladding [J].Applied Surface Science,2012,258:7699.

    • [25] WAN M Q,SHI J,LEI L,et al.A comparative study of the microstructure,mechanical properties and corrosion resist-ance of Ni-or Fe-based composite coatings by laser cladding [J].Journal of Materials Engineering and Performance,2018,27:2844.

    • [26] LI B,SHEN Y F.Ti-Cu flame-retardant modified layer pre-pared by friction stir processing on surface of TC4 Ti alloy [J].The Chinese Journal of Nonferrous Metals,2018,28(3):435-445.

    • [27] LI B,DING R D,SHEN Y F,et al.Preparation of Ti-Cr and Ti-Cu flame-retardant coatings on Ti-6Al-4V using a high-energy mechanical alloying method:A preliminary re-search[J].Materials & Design,2012,35:25-36.

    • [28] WANG F.Direct laser fabrication of Ti-25V-15Cr-2Al-0.2C burn-resistant titanium alloy[J].Metallurgical and Materials Transactions A,2012,43A:677-686.

    • [29] WANG Q M,WU Y N,GUO M H,et al.Ion-plated Al-O-N and Cr-O-N films on Ni-base superalloys as diffusion barriers [J].Surface & Coating Technology,2005,197(1):68-76.

    • [30] WANG Z,FANG Q,LI J,et al.Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys [J].Journal of Materials Science and Technology,2018,34:349-354.

    • [31] TSAI K Y,TSAI M H,YEH J W.Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J].Acta Materialia,2013,61(13):4887-4897.

    • [32] 杨迪,孟旭,赵越超.多主元高熵合金基复合材料的研究进展[J].热加工工艺,2019,48(16):29-33.YANG D,MENG X,ZHAO Y C.Research progress of multi-principal component high entropy alloy matrix compos-ites[J].Hot Working Technology,2019,48(16):29-33(in Chinese).

    • [33] DAROONPARVAR M,YAJID M A M,KAY C M,et al.Effects of Al2O3 diffusion barrier layer(including Y-contai-ning small oxide recipitates)and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100 ℃ [J].Corrosion Science,2018,144:13-34.

    • [34] ABOULKHAIR N T,EVERITT N M,ASHCROFT I,et al.Reducing porosity in AlSi10Mg parts processed by selective laser melting [J].Additive Manufacturing,2014,4:77-86.

    • [35] VISCUSI A,LEITAO C,RODRIGUES D M,et al.Laser beam welded joints of dissimilar heat treatable aluminium al-loys[J].Journal of Materials Processing Technology,2016,236:48-55.

    • [36] 覃思思,曾归余,谭彦显,等.铝合金表面耐磨涂层的制备研究[J].兵器材料科学与工程,2016,39(2):91-94.QIN S S,ZENG G Y,TAN Y X,et al.Preparation of wear-resistant coating on aluminum alloy surface [J].Ordnance Material Science and Engineering,2016,39(2):91-94(in Chinese).

  • 参考文献

    • [1] SCHOPPHOVEN T,GASSER A,WISSENBACH K.Inves-tigations on ultra high-speed laser material deposition as alter-native for hard chrome plating and thermal spraying [J].Journal of Laser Applications,2016,28(5):0225011-9.

    • [2] SCHOPPHOVEN T,GASSER A,BACKES G.EHLA:Ex-treme high-speed laser material deposition-economical and ef-fective protection against corrosion and wear[J].Laser Tech-nik Journal,2017,4:26-29.

    • [3] 李俐群,申发明,周远东,等.超高速激光熔覆与常规激光熔覆431不锈钢涂层微观组织和耐蚀性对比研究[J].中国激光,2019,46(10):174-183.LI L Q,SHEN F M,ZHOU Y D,et al.Microstructure and corrosion resistance analysis of 431 stainless steel coating pre-pared by extreme high speed laser cladding and conventional laser cladding [J].Chinese Journal of Lasers,2019,46(10):174-183(in Chinese).

    • [4] LI L Q,SHEN F M,ZHOU Y D,et al.Comparative study of stainless steel AISI 431 coatings prepared by extreme high-speed and conventional laser cladding[J].Journal of Laser Applications,2019,31(4):042009.

    • [5] 王豫跃,牛强,杨冠军,等.超高速激光熔覆技术绿色制造耐蚀抗磨涂层[J].材料研究与应用,2019,13(3):165-172.WANG Y Y,NIU Q,YANG G J,et al.Investigations on corrosion-resestant and wear-resistant coatings environmental-friendly manufactured by a novel super-high efficient laser cladding[J].Materials Research and Application,2019,13(3):165-172(in Chinese).

    • [6] 李岩,白瑞兴,娄丽艳,等.1.8kW 高速激光熔覆铁基合金工艺与组织结构[C]∥ 第二十一届国际热喷涂研讨会暨第二十二届全国热喷涂年会,中国天津,2018.LI Y,BAI R X,LOU L Y,et al.Microstructure of ferrous alloy coatings deposited by 1.8kW high speed laser cladding [C]∥International Thermal Spraying Seminar 2018 and Chi-na National Thermal Spraying Conference 2018,Tianjin Chi-na,2018(in Chinese).

    • [7] 娄丽艳,李成新,张煜,等.低功率超高速激光熔覆FeCr合金薄涂层微观结构与表面形貌演化[J].燕山大学学报,2020,44(2):116-124.LOU L Y,LI C X,ZHANG Y,et al.Microstructure and surface morphology evolution of FeCr alloy thin coatings de-posited by ultra-high speed laser cladding with low laser pow-er[J].Journal of Yanshan University,2020,44(2):116-124(in Chinese).

    • [8] 澹台凡亮,田洪芳,陈峰,等.高速激光熔覆在27SiMn液压支架立柱上的应用探讨[J].新技术新工艺,2019,3:52-54.TANTAI F L,TIAN H F,CHEN F,et al.Discussion on ap-plication of high-speed laser cladding on 27SiMn hydraulic support column[J].New Technology & New Process,2019,3:52-54(in Chinese).

    • [9] 王先龙,张维林,侯军,等.超高速激光熔覆在采煤机齿轮上应用研究[J].焊接与切割,2020,7:22-23.WANG X L,ZHANG W L,HOU J,et al.Application of ul-tra high speed laser cladding on coal-mining machine gears [J].Welding & Cutting,2020,7:22-23(in Chinese).

    • [10] SCHOPPHOVEN T,SCHLEIFENBAUM J H,THARMAKU-LASINGAM S,et al.Setting sights on a 3D process[J].Photonics Views,2019,16(5):64-68.

    • [11] 王开明,雷永平,符寒光,等.功率对激光熔覆镍基WC涂层组织与硬度的影响 [J].稀有金属材料与工程,2017,46:3474-3478.WANG K M,LEI Y P,FU H G,et al.Effect of power on microstructure and hardness of Ni-based WC coating by laser cladding [J].Rare Metal Materials and Engineering,2017,46:3474-3478(in Chinese).

    • [12] 李福泉,冯鑫友,陈彦宾.WC 含量对 WC/Ni60A 激光熔覆层微观组织的影响[J].中国激光,2016,43(4):117-123.LI F Q,FENG X Y,CHEN Y B.Influence of WC content on microstructure of WC/Ni60A laser cladding layer [J].Chinese Journal of Lasers,2016,43(4):117-123(in Chi-nese).

    • [13] SHU D,LI Z G,ZHANG K,ed al.In situ synthesized high colume fraction WC reinforced Ni-based coating by laser clad-ding[J].Materials Letters,2017,195:178-181.

    • [14] LEUNDA J,SANZ C,SORIANO C.Laser cladding strate-gies for producing WC reinforced NiCr coatings inside twin barrels [J].Surface & Coatings Technology,2016,307:720-727.

    • [15] ORTIZ A,GARCíA A,CADENAS M,et al.WC particles distribution model in the cross-section of laser cladded NiCrBSi plus WC coatings,for different wt% WC[J].Sur-face & Coatings Technology,2017,324:298-306.

    • [16] HOFMAN J T,DE LANGE D F,PATHIRAJ B,et al.FEM modeling and experimental verification for dilution control in laser cladding[J].Journal of Materials Processing Technolo-gy,2011,211:187-196.

    • [17] SONG B,HUSSAIN T,VOISEY K T.Laser cladding of Ni50Cr:a parameter and dilution study[J].Physics Proce-dia,2016,83:706-715.

    • [18] 杨二娟,李勇,李巍,等.WC 含量对激光熔覆 NiCrBSi-WC 复合涂层显微结构及力学性能的影响[J].表面技术,2019,48(9):238-244.YANG E J,LI Y,LI W,et al.Effect of WC particle content on microstructure and mechanical properties of laser cladded NiCrBSi-WC composite coating [J].Surface Technology,2019,48(9):238-244(in Chinese).

    • [19] 上官绪超,赵运才,徐颖,等.激光功率对WC颗粒增强铁基复合涂层摩擦学性能的影响 [J].金属热处理,2018,43(3):56-61.SHANGGUAN X C,ZHAO Y C,XU Y,et al.Effect of la-ser power on tribological properties of WC particles reinforced iron-based composite coating[J].Heat Treatment of Metals,2018,43(3):56-61(in Chinese).

    • [20] 陈希章,胡科,袁其兵.激光熔敷原位合成WC增强铁基复合涂层的组织和性能[J].中国表面工程,2016,29(4):118-124.CHEN X Z,HU K,YUAN Q B.Microstructure and perform-ance of WC reinforced Fe-based composite coating synthe-sized in-situ produced by laser cladding[J].China Surface Engineering,2016,29(4):118-124(in Chinese).

    • [21] ZHOU S,ZENG X,HU Q,et al.Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization [J].Applied Surface Science,2008,255:1646-1653.

    • [22] LEE C M,PARK H,YOO J,et al.Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC+ NiCr[J].Applied Surface Science,2015,345:286-294.

    • [23] ZHOU S,HUANG Y,ZENG X.A study of Ni-based WC composite coatings by laser induction hybrid rapid cladding with elliptical spot[J].Applied Surface Science,2008,254(10):3110-3119.

    • [24] SUN N,SHAN H,ZHOU H,et al.Friction and wear behav-iors of compacted graphite iron with different biomimetic units fabricated by laser cladding [J].Applied Surface Science,2012,258:7699.

    • [25] WAN M Q,SHI J,LEI L,et al.A comparative study of the microstructure,mechanical properties and corrosion resist-ance of Ni-or Fe-based composite coatings by laser cladding [J].Journal of Materials Engineering and Performance,2018,27:2844.

    • [26] LI B,SHEN Y F.Ti-Cu flame-retardant modified layer pre-pared by friction stir processing on surface of TC4 Ti alloy [J].The Chinese Journal of Nonferrous Metals,2018,28(3):435-445.

    • [27] LI B,DING R D,SHEN Y F,et al.Preparation of Ti-Cr and Ti-Cu flame-retardant coatings on Ti-6Al-4V using a high-energy mechanical alloying method:A preliminary re-search[J].Materials & Design,2012,35:25-36.

    • [28] WANG F.Direct laser fabrication of Ti-25V-15Cr-2Al-0.2C burn-resistant titanium alloy[J].Metallurgical and Materials Transactions A,2012,43A:677-686.

    • [29] WANG Q M,WU Y N,GUO M H,et al.Ion-plated Al-O-N and Cr-O-N films on Ni-base superalloys as diffusion barriers [J].Surface & Coating Technology,2005,197(1):68-76.

    • [30] WANG Z,FANG Q,LI J,et al.Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys [J].Journal of Materials Science and Technology,2018,34:349-354.

    • [31] TSAI K Y,TSAI M H,YEH J W.Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J].Acta Materialia,2013,61(13):4887-4897.

    • [32] 杨迪,孟旭,赵越超.多主元高熵合金基复合材料的研究进展[J].热加工工艺,2019,48(16):29-33.YANG D,MENG X,ZHAO Y C.Research progress of multi-principal component high entropy alloy matrix compos-ites[J].Hot Working Technology,2019,48(16):29-33(in Chinese).

    • [33] DAROONPARVAR M,YAJID M A M,KAY C M,et al.Effects of Al2O3 diffusion barrier layer(including Y-contai-ning small oxide recipitates)and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100 ℃ [J].Corrosion Science,2018,144:13-34.

    • [34] ABOULKHAIR N T,EVERITT N M,ASHCROFT I,et al.Reducing porosity in AlSi10Mg parts processed by selective laser melting [J].Additive Manufacturing,2014,4:77-86.

    • [35] VISCUSI A,LEITAO C,RODRIGUES D M,et al.Laser beam welded joints of dissimilar heat treatable aluminium al-loys[J].Journal of Materials Processing Technology,2016,236:48-55.

    • [36] 覃思思,曾归余,谭彦显,等.铝合金表面耐磨涂层的制备研究[J].兵器材料科学与工程,2016,39(2):91-94.QIN S S,ZENG G Y,TAN Y X,et al.Preparation of wear-resistant coating on aluminum alloy surface [J].Ordnance Material Science and Engineering,2016,39(2):91-94(in Chinese).

  • 手机扫一扫看