-
0 引言
-
冷喷涂作为新兴的喷涂技术,自20 世纪80年代出现以来,以其低的喷涂温度(可室温喷涂)和高的喷涂速度(最高达到1500 m/s)得到业内广泛关注[1-3]。 图1 是近年来冷喷涂方向每年的出版物数量跟等离子喷涂和超音速喷涂( High-velocity oxygen-fuel, HVOF)的一个比较数据[4]。从中可以看出,冷喷涂作为热喷涂家族的“后起之秀”,近十几年来发展尤为迅速[4]。 相对于热喷涂而言,冷喷涂涂层在制备过程中,粒子温度远低于熔点,因此不发生熔融,能够避免高温氧化及有害相变的发生[5-7]。 在冷喷涂中,高于临界速度飞行的粒子主要依靠其在基体的高速撞击产生的塑性变形来形成涂层[8],因此制备的涂层具有沉积效率高、孔隙率低、结合强度较高等特点[9-12]。 自2000 年以来,冷喷涂获得了快速发展[4]。 起初,冷喷涂主要用于制备Cu[13-14]、Al[15]、Zn[16]等易变形材料涂层,近年来随着冷喷涂技术的不断发展,一些难熔金属,诸如Ti和Ti合金[17-18]、Ta[19]、高温合金[20],甚至一些陶瓷材料[21]也逐渐用于冷喷涂涂层制备。
-
图1 以每年出版物数量衡量的冷喷涂、等离子喷涂和超音速喷涂的研究趋势[4]
-
Fig.1 Trend of interest in cold spray research as measured by the number of publications per years, as compared to that in plasma spraying and high-velocity oxy-fuel spraying[4]
-
钛及钛合金因具有较高的耐腐蚀性、比强度及良好的韧性等许多优良的性能被广泛地应用于航空航天、船舶、生物医学等领域[22-23]。 由于钛的氧活性很高,传统的热喷涂技术不适宜制备钛及钛合金涂层,而冷喷涂由于制备温度低,在较易氧化的涂层制备方面具有独特优势。 由于冷喷涂主要是高速飞行的粒子在撞击基体时发生严重的塑性变形,从而实现涂层沉积,对于金属材料来讲,晶格类型为FCC的金属如Al、Cu等,由于滑移系较多,较易发生塑性变形,而对于晶格类型为HCP的金属如Ti、Co等,由于其内部滑移系统较少,因此,塑性较差[24]。 早前,李文亚等[25] 以空气为喷涂气体, 在气体温度为520℃,压力为2.8 MPa的条件下,制备了纯钛和钛合金涂层, 发现两种涂层的孔隙率高达5.1%和22.4%,而孔隙往往存在于有限变形的粒子之间,影响了涂层整体性能的提高。 近年来,国内外学者对冷喷涂钛及钛合金涂层从喷涂参数、粉末状态、喷嘴及基体等不同方面进行了组织调控,对研究冷喷涂钛及钛合金涂层提供了诸多借鉴。 文中拟从涂层制备及组织调控角度对国内外现有的研究文献进行梳理,并对研究现状做初步总结,展望冷喷涂钛及钛合金涂层未来的发展方向。
-
1 冷喷涂钛及钛合金涂层制备过程调控
-
在冷喷涂工艺中,粒子速度被公认为决定涂层质量的最关键因素。 根据Dykhuizen等[26] 的研究,粒子速度由公式(1)决定:
-
式中:M 为马赫数(由喷嘴内部形状决定),Mg 为气体分子量,γ 为比热比,R 为气体常数,T为气体温度,D 为粒子直径,χ 为喷嘴喉部到出口的轴向距离,P0 为喷嘴出口处的气体压力,ρP 为粒子密度。 由此可见,影响粒子速度的三个主要因素为喷嘴、喷涂气体、喷涂粒子,因此是冷喷涂涂层组织调控的对象。 除此之外,基体材料及状态也通过影响首层粒子的沉积状态进而影响整个涂层的性能。
-
1.1 喷涂参数
-
早前,西安交通大学热喷涂实验室的李长久等[27]分别采用N2 和He作为喷涂气体制备了Ti涂层,显微组织观察结果表明,用He制备的涂层较用N2 制备的涂层而言,其组织更加致密,涂层顶部的多孔层厚度也明显降低,其主要原因是在He条件下粒子能获得更大的速度,从而发生更充分的变形。 加拿大学者Wong等[28] 从气体温度、压力、喷枪移动速度等方面系统研究了喷涂参数对不同形状的Ti及Ti6Al4V涂层的影响。其结果如表1 所示[28]。 当气体的温度和压力提高时,粒子的速度提高,涂层的孔隙率随之降低;涂层沉积效率、孔隙率在不同喷涂速度下均无明显差别,然而涂层顶部的显微硬度在低速条件下稍低,可能是因为低速喷涂时基体温度更高,热软化更明显,从而得到的涂层更软一些。 相同条件下,Ti6Al4V涂层比Ti涂层更多孔,是因为合金元素的添加使得材料变硬。 渥太华大学的Pelletier J L等[29]研究了粉末喂料速度和粉末流动速度对涂层的影响,发现喂料速度和粉末流动速度越高,涂层孔隙率越高,厚度越厚,其原因可能是低的喂料速度能够减小后面粒子与先沉积涂层的撞击角度,而粉末流动速度对喷嘴中的气流产生影响所致。 此外,喷涂角度和喷涂距离也是影响粒子沉积特性的关键因素。 殷硕等[30] 研究了喷涂角度对冷喷涂Ti粒子沉积行为的影响,认为非垂直角度喷涂时,粒子与基体的结合会减弱,其单个粒子不同角度撞击基体时的结合状态和涂层横截面形貌见图2 和图3[30];Zahiri S H等[31]采用不同的喷涂距离制备了Ti涂层,结果表明随着喷涂距离的增加,涂层孔隙率上升(见图4)。 究其原因是因为喷涂距离增大,粒子速度衰减越大,导致变形动力减小。 综合来看,气体温度和压力是影响涂层沉积性能的关键因素。因此,对于钛与钛合金涂层而言,尽可能地采用高的气体温度和压力可以有效提高粒子速度,进而制备高质量涂层。
-
表1 球形颗粒与不规则颗粒的Ti粉所得涂层的试验条件和结果[28]
-
Table1 Experimental condition and results for spherical and augular powders[28]
-
图2 单个Ti粒子以不同角度撞击到Cu基体上的形貌(60°时无粒子沉积)[30]
-
Fig.2 Surface morphologies of a single Ti particle on the Cu substrate at different spray angles observed by SEM(No particles were deposited when spray angle is 60°)[30]
-
图3 以不同角度沉积在Cu基体上的Ti涂层的横截面金相组织[30]
-
Fig.3 Cross-sectional OM micrographs of the Ti coating deposited on the Cu substrate at different spray-angles[30]
-
图4 Ti涂层孔隙率随喷涂距离的变化趋势(22 μmTi涂层,N2,600℃,2.4 MPa)[31]
-
Fig.4 Porosity as a function of stand-off for 22 μm Ti powder deposited at 600℃ and 2.4 MPa pressure with nitrogen as deposition gas[31]
-
1.2 粉末状态
-
喷涂粉末作为喷涂系统中至关重要的因素,对涂层性能存在直接影响。 除粉末材质外,粉末形貌、尺寸和温度也会影响涂层形成过程和涂层性能。 对于Ti及Ti合金粉末而言,从粉末的制备方法来看,存在等离子雾化、惰性气体雾化和氢化脱氢等3 种方式制备的粉末,前两种方法制成的粉末形状为球形,后一种为不规则形状。 这3 种工艺制备的粉末物相组成有很大不同(前两种由于制备过程中较高的冷却速度,导致出现较高含量的 α′相),因此也导致涂层的微观组织呈现出不同的特征,这将对涂层的性能产生直接影响[32]。 Wong W等[28]采用这两种形状的Ti粉进行了冷喷涂涂层制备,结果表明用不规则粉末制备的涂层更致密,其原因是不规则粒子的拖曳常数较高,在喷嘴出口处可获得更高的粒子速度,因此不规则粒子与基体的结合也较好[33]。 但是也有人进一步研究指出不规则粉末在喷涂过程中更易氧化[34],且流动性不及球形粉[35]。 通过综合比较临界速度、涂层沉积效率和致密度,Wong W等[36]认为球形中等大小的球形Ti粒子最适合冷喷。 Cinca N等[37] 研究球形的Ti在Al基体的沉积特性,认为宽的粒子分布会导致涂层孔隙、厚度和硬度的不均匀,而当粒子分布较窄时,涂层性能更加均一。 在此基础上, Schmidt等[34]进一步提出临界粒子尺寸的概念,指出只有达到某一临界尺寸的粒子才能发生绝热剪切失稳,并给出了计算临界尺寸的公式:
-
式中: 为热导率, 为比热容, 为密度, 为粒子速度。 通过公式(2),作者进而给出了常用金属粒子的临界尺寸,见图5[34]。 除此之外,粒子预热被证明也是增强粒子变形的一种有效手段。 Bae G等[38]对冷喷涂Ti涂层的研究发现,预热喷涂粉末可以提高粒子表面温度,增强热软化能力,从而带来更严重的粒子变形。 Blose R等[39]将Ti6Al4V粉末在500-800℃ 之间进行了预热,发现随着预热温度的增加,涂层孔隙率不断降低, 硬度不断提高, 而当预热温度在750℃ 以上时, 涂层组织基本保持不变, 同时700℃以上会出现氧化物和氮化物,因此对Ti和Ti合金粉末粒子的预热温度不易超过700℃。
-
图5 撞击时能发生局部绝热应变的最小粒子直径[34]
-
Fig.5 Minimum particle diameter for localized adiabatic straining during impact[34]
-
1.3 喷嘴设计
-
冷喷涂技术是完全基于空气动力学原理开发出来的,粒子加速是通过具有收敛-发散几何形状的拉瓦尔喷嘴实现的[4]。 喷涂气体在喷嘴内部完成加速过程,进而带动粒子高速飞行。 因此,喷嘴作为冷喷涂设备的关键部件,对提高粒子的飞行速度起着至关重要的作用。 广州新材料研究所的黄仁忠等[40]通过CFD液体动力学模拟方法研究了喷嘴内部形状对Ti粒子速度的影响。 研究发现,对于一定的喷嘴出口直径存在一个最优的发散长度,在此长度下能获得最高的粒子速度。 除此之外,拉瓦尔喷嘴出口和喉部的直径比对粒子速度也有影响。 对一个固定发散长度的喷嘴来说,存在一个最佳出口和喉部的直径比,在此值上粒子速度达到最大,见图6[40]。 模拟结果显示,长的发散长度和大的出口/喉部比值能够带来更高的粒子速度。 他们采用发散部分长度为300 mm,出口和喉部直径比为2.5 的喷嘴,用N2 作为喷涂气体制备了纯Ti冷喷涂涂层。在喷涂条件为3 MPa、800℃ 条件下获得的Ti粒子的速度为850 m/s。 较较短发散长度和较小出口喉部直径比情况下为高。 图7 为用改性后的喷嘴制备的Ti涂层[40],可以看出其组织明显较改性前致密。 除此之外,西北工业大学的李文亚等[41]通过设计一种新型Cnvergent-barrel喷嘴,改变喷嘴内部形状,从而在低压下实现了高的粒子温度。还有学者[42]通过改变喷嘴材质,发现具有较高热导率的喷嘴能够降低粒子临界速度,从而实现更高的沉积效率。 对喷嘴的设计在一定程度上已经超越了材料学科的研究范畴,因此目前在整个冷喷涂研究领域,对喷嘴的设计研究还比较缺乏,有待于推动学科交叉进行深层次改进。
-
图6 粒子速度与喷嘴发散部分长度和出口与喉径比之间的关系
-
Fig.6 Calculated particle velocity influenced by nozzle divergence length and exit to throat radio
-
图7 Ti涂层的横截面喷嘴优化前喷嘴优化后
-
Fig.7 Cross-sections of Ti coatings pre-optimized nozzle optimized nozzle
-
1.4 基体状态调控
-
冷喷涂涂层常常应用于防护领域,保护基体金属免受腐蚀和磨损。 作为涂层系统中不可缺少的一部分,基体的材质、表面状态等对涂层的性能,尤其结合强度有着较大的影响。 Vidaller MV等[43]在Ti、Ti6Al4V、Al和Mg合金表面制备了冷喷涂Ti6Al4V涂层,研究发现在较高强度的基体上喷涂时,粒子的剪切失稳和溅射更明显。 相对而言,如果基体的强度较喷涂粉末材料的强度为低,则粒子撞击后基体的变形大于粒子变形。Bae G等[44]、殷硕等[30] 的模拟结果也得出了同样的结论。 Vidaller M V等[43]通过气蚀法研究了粒子与基体的结合强度,给出了在较硬的基体上,高的粗糙度能增强结合的结论。 此外,Goldbaum D等[45] 在纯Ti和Ti6Al4V基体上制备了与基体同样材质的涂层。 结果表明,当基体被预热到400℃ 时,Ti粒子的变形和结合强度都明显提高。 而对Ti6Al4V粒子来说,虽然粒子的变形没有显著增加,但是粒子的结合强度有所提高。在涂层研究中,学术界普遍认为喷涂前对基体进行表面粗化有助于增强机械结合。 然而,在对Ti和Ti合金冷喷涂涂层的研究中,亦有人得出相反的结论。 Price T等[46]纯Ti冷喷涂涂层的研究表明,基体的粗糙度增加,却不易于结合强度提高,他们认为喷砂处理的表面由于加工硬化反而弱化了与粒子的结合,Perton M等[47] 也持相同观点,并进一步提出喷涂时同步激光烧蚀和激光预热的方法可以有效提高涂层与基体的结合。 除此之外,基体表面的氧化层亦会对粒子沉积和结合有较大影响[48],应在喷涂之前及时进行有效的基体表面去氧化处理。
-
综上,目前的研究主要从喷涂参数、粉末状态、喷嘴及基体等方面对Ti及Ti合金涂层进行了组织调控,其中喷涂参数是实现组织调控的主要手段,通过喷涂参数的调整,使得涂层的性能得以改善。 文中作者在他人总结的基础上,补充总结了迄今为止文献中报道的不同喷涂条件下Ti及Ti合金冷喷涂涂层的结合强度值,列于表2 中[49]。
-
表2 钛及钛合金涂层的结合强度值[49]
-
Table2 Bonding strength of Ti and Ti alloy coating[49]
-
2 在线辅助喷丸冷喷涂技术
-
冷喷涂中存在锤击效应已被众多研究所证实[16, 27, 57],对于难变形的Ti和Ti合金而言,可以利用这种锤击效应来增强粒子变形,从而降低涂层孔隙率。 西安交通大学热喷涂实验室的雒晓涛等[58]提出了原位喷丸的冷喷涂方法,通过在喷涂粉末中掺入尺寸较大的喷丸颗粒,利用喷丸颗粒反弹前的撞击力辅助粒子变形。 应用此方法,他们制备了冷喷涂Ti及Ti合金涂层,结果表明随着喷丸颗粒含量的增加,涂层不断变致密(图8[58]),当喷丸添加量达到70vol%时,涂层各项性能与He气喷涂条件下相当。 这为N2 条件下制备致密的Ti和Ti合金涂层提供了新的思路。 在该研究基础上,文中作者继续研究了Ti6Al4V涂层中,喷涂气体温度对原位喷丸技术的影响。 研究结果表明[54],当喷丸含量固定时,随着喷涂气体温度的增加,喷丸的夯实深度逐渐减小,其作用关系如图9 所示[54],说明在Ti及Ti合金涂层的制备中,喷丸的夯实作用会受到粒子应变硬化的影响。 而且在低温涂层中,喷丸的局部锤击作用使得涂层呈现出致密区域和多孔区域相交叉的独特结构。 最新的研究表明该结构在热处理后进一步演变成一种“三维致密网” 结构,从而为涂层提供强度支撑(相关论文即将发表)。 原位喷丸辅助冷喷涂技术经验证,也能有效提高Al[59]、Inconel718[60]等涂层致密度。
-
图8 用纯TC4 粉末和不同体积分数的喷丸颗粒混合粉末制备的TC4 涂层的组织形貌
-
Fig.8 Cross sectional microstructure of the TC4 coatings deposited with pure TC4 powder and powder mixtures with different proportions of the shot peening particles
-
图9 喷丸夯实深度与喷涂气体温度之间的关系[54]
-
Fig.9 Action depth of the shot as a function of the accelerating gas temperature[54]
-
3 喷涂后的热处理
-
对于冷喷涂中涂层与基体以及涂层内部的结合机理,普遍认为机械咬合和冶金结合是主要机理[ 48, 61-63]。 涂层与基体以及涂层内部发生冶金结合的程度越高,结合强度越好,涂层性能越好。 而喷涂后的热处理就是通过微观组织调控来达到提高涂层结合强度、增强涂层韧性、释放残余应力的有效手段。 通过喷涂后的热处理进一步提高涂层性能是冷喷涂涂层后处理手段中较为简单且容易实现工程应用的方法。
-
Zahiri S H等[64] 将冷喷涂Ti涂层在550℃进行了热处理,组织观察表明涂层发生了再结晶,晶粒细化导致涂层拉伸强度提高,延伸率增加,热处理前延伸率只有0.02%, 拉伸强度800 MPa,热处理后延伸率达到8%,拉伸强度600 MPa。 涂层的延伸率提高是因为热处理能提高粒子间的冶金结合,从而改善原始涂层中没有发生有效结合的粒子的结合状态。
-
西北工业大学的李文亚等[65] 在850℃ 真空气氛下将Ti和Ti6Al4V涂层退火4 h,发现退火过程中粒子之间的接触界面通过原子扩散和晶界迁移发生了冶金结合,而涂层的孔隙率统计结果表明,热处理后两种涂层的孔隙率有所增加。
-
文中作者也研究了Ti6Al4V涂层在后续热处理过程中孔隙的演变规律,也发现了在局部热处理温度下涂层的孔隙率有所增加的情况,这一方面是统计方法导致的,另一方面也是由于热处理过程中随着残余应力的释放,部分弱结合和未结合的粒子界面相互脱离引起的。
-
诺丁汉大学的Hussain T等[ 17] 在1050℃时对Ti涂层进行了热处理,发现由于热处理后涂层孔隙率降低,从而涂层的耐蚀性提高,高温热处理对涂层内部组织的改善效果比低温更强。
-
黄仁忠等[ 66] 研究了Al、 Ti、Cu、不锈钢等4 种涂层喷涂后的热处理后的力学性能,结果表明热处理可以显著提高Cu涂层的性能,Al和不锈钢次之,而对于Ti涂层,即便热处理温度提升到1000℃,均无法显著的提高涂层的拉伸强度,热处理后的拉伸强度和伸长率均低于块体。 由此,他们进一步揭示了致密的涂层和多孔的涂层在热处理过程中的微观组织变化过程,原理图见图10[ 66]。 他们认为对于多孔的Ti涂层而言,热处理仍然无法使全部的孔隙愈合,进而无法得到与块体相匹敌的力学性能。
-
据此,作者总结了文献中给出的热处理前后的Ti及Ti合金涂层孔隙率及热处理后涂层试样的拉伸强度,见表3。 从表3 中汇总结果可知,对于Ti及Ti合金涂层而言,喷涂后的热处理能提高原始涂层的性能,但是提高作用是有限的,热处理后的涂层性能仍然远低于块体。
-
图10 冷喷涂涂层在热处理过程中的组织演变过程[66]
-
Fig.10 Schematic of the evolving cold-sprayed coating during heat treatment[66]
-
4 喷涂后的热等静压处理
-
由于冷喷涂涂层韧性低、结合差等“先天缺陷”,学界有人提出了“冷喷涂+”的概念[71],即采用不同的后处理手段来对涂层性能进行进一步改善。 除了上文提到的热处理外,业内也有人采用诸多其他手段,使涂层性能得到了不同程度的提高。 早前,BLOSE R H等采用热等静压( Hotisostatic pressing, HIP)方式对TC4 涂层进行了处理,使涂层的性能得到大幅提高[72]。 近日,陈超越等[73]进一步系统研究了喷涂后的热等静压处理(HIP)对He气和N2 气两种喷涂条件下制备的Ti6Al4V涂层的改善作用,并采用X射线断层扫描技术和计算机三维重建技术来识别内部孔隙,其结果见图11[73]。 数据统计表明,He条件下制备的涂层的孔隙率在热等静压处理后由1.164%降为0.037%,N2 条件下制备的涂层由2.443%降为1.498%。 对于He制备的涂层,喷涂后的热等静压处理可以很好地去除孔隙(只剩下20 μm左右的一些少量孔隙),几乎实现了完全致密化,拉伸强度测试结果表明涂层的抗拉强度达到963.41 MPa,与块体相当(图12[73])。 然而,对于原本多孔的N2 条件下制备的钛合金涂层而言,热等静压并不能完全去除涂层内部的孔隙,测试结果表明仍有大量20~60 μm的孔隙残留在涂层内部。 试验测得N2 条件下钛合金涂层的拉伸强度在热等静压处理后达到650 MPa,较之前的90.24 MPa有较大的提升,但是两种涂层的延伸率依然提高有限。 由此可见,喷涂后的热等静压处理较之于单纯的热处理可以显著改善涂层拉伸强度,但是还是很难大幅提高原始涂层的韧性。
-
图11 冷喷涂Ti6Al4V涂层在不同状态下的孔隙三维重建(颜色比例尺对应于重建孔的等效直径)
-
Fig.11 3D-reconstruction of the pores within the coldsprayed Ti6Al4V samples under different conditions:While the color scale bar corresponds to the equivalent diameter of the reconstructed poress
-
最近,中国科学院金属研究所的熊天英等[74]采用常见的轧制工艺将A380 冷喷涂铝合金涂层进行了后处理,结果证明在经过一道轧制后,粒子间界面并没有完全闭合,而经过两道轧制后粒子间界面发生了较好的愈合,而且涂层的拉伸强度也有了明显提高。
-
此外,Hodder K J等[75] 通过搅拌摩擦焊对Al-Al2O3 复合冷喷涂涂层进行了处理,发现处理后的涂层硬度提高,且硬质相Al2O3 的尺寸减小。 然而,截至目前,冷喷涂Ti和Ti合金涂层喷涂后的轧制、搅拌摩擦焊及其他处理手段目前还鲜见报道。
-
图12 冷喷涂Ti6Al4V涂层在不同条件热等静压处理后的拉伸强度和延伸率
-
Fig.12 Variation of UTS and elongations of cold-sprayed Ti6Al4V samples under different conditions
-
5 低温超音速喷涂(LT-HVOF)技术
-
冷喷涂制备钛及钛合金涂层的最大优势在于加工温度低,能够避免钛及钛合金的高温氧化。 虽然低压等离子喷涂技术( Low pressure plasma spray, LPPS)也可以降低氧化,但是它需要一个大的真空室,仪器成本较高,除此之外,由于低压等离子喷涂技术冷却速度较高,导致涂层中容易出现非平衡相[76-77]。 尽管冷喷涂可以避免钛及钛合金涂层高温制备条件下的易氧化性,但是喷涂温度很难增加到1200 K以上。 因此对于难变形的Ti及Ti合金等材料,除非使用昂贵的氦气作为喷涂气体,否则很难制得致密的涂层。 为了进一步提高冷喷涂的温度使粒子获得更大的速度,本世纪初出现了低温超音速火焰喷涂技术(Low temperature-high velocity oxygen-fuel,LT-HVOF),也称为温喷涂技术( Warm spraying,WS)。 所谓的温喷涂是对传统的超音速喷涂进行了一个改良,在燃烧室中混入室温气体(通常用氮气)(原理见图13[80]),从而使常规超音速喷涂的温度得以降低,并保持在超音速喷涂和冷喷涂之间,大约为700 K到1900 K[78-80],各个喷涂技术的温度分布见图14[80]。 温喷涂能克服冷喷涂的温度不足,使粒子在撞击时更容易发生软化从而发生更大的变形。 通过Watanabe M等[81]对氮气流速对Ti涂层性能的影响研究可知,在温喷涂过程中氮气的流速需控制在一个合适的范围为宜,因为它直接影响氮气在燃烧室中的充入量,从而影响燃烧室的温度。 如果氮气流速过大,将会导致燃烧室内的温度下降,粒子软化不充分;如果过小,则会导致燃烧室温度过高从而容易引发Ti粒子氧化。 因此在温喷涂过程中要综合考虑粒子温度对粒子变形性和氧化性两方面的影响。 此外,还有一些需要调控的温喷涂参数,如燃烧室压力、喷涂距离和枪长度等[82-83],这些喷涂参数对涂层性能的影响都是通过影响粒子温度和速度来实现的。
-
图13 低温超音速喷涂(温喷涂)原理图[80]
-
Fig.13 Schematic of a commercially available LT-HVOF(WS)[80]
-
图14 不同热喷涂技术的温度和速度分布[80]
-
Fig.14 Schematic classification of various thermal spray processes by the temperature and velocity of sprayed particles[80]
-
目前,冷喷涂技术呈现出向高温、高压方向发展的态势,这有利于喷涂高熔点、难变形的金属,如钛合金等。 作为世界喷涂设备的重要研发制造商,日本等离子技研工业株式会社近期推出了喷涂压力可达7.5 MPa,温度1100℃的冷喷涂设备。 目前,该设备正在国内进行推广,相关的研究工作正在开展。 相信随着技术的不断发展,难变形粒子的变形问题将不断得到解决。
-
6 总结与展望
-
如上所述,目前对冷喷涂钛及钛合金涂层的组织调控手段主要集中于喷涂参数、粉末、喷嘴和基体等方面,总的来看,提高气体温度和压力是增强难变形金属粒子变形的较为直接和有效的手段,然而,高的气体温度和压力对冷喷涂设备提出了更高的要求。 除此之外,一些新的方法如在线辅助喷丸及过后的热处理和热等静压处理、温喷涂等,也为进一步提高涂层质量提供了不同的解决途径。
-
目前,从国内外研究现状分析,对Ti及Ti合金冷喷涂层的研究中还存在以下不足之处。
-
(1)在Ti及Ti合金冷喷涂层的研究中,研究冷喷涂Ti涂层的相对较多,而对钛合金包括常用的Ti6Al4V及其他钛合金涂层的研究相对较少。由于目前对新型钛合金材料的开发应用还在前进,因此对新型钛合金涂层的研究也应该相应展开。
-
(2)在Ti及Ti合金涂层制备方面的研究中,对冷喷涂工艺本身的研究较多,而对涂层形成过程中,粒子内部显微结构的变化研究较少。 因此,在今后的研究中应更加注重粒子在高速撞击过程中,内部微观组织结构的演变。
-
(3)由于Ti及Ti合金的难变形性,导致在粒子沉积过程中很难发生溅射,从而也很难用绝热剪切失稳引发溅射进而导致结合的主流观点来解释结合机理,因此对钛合金结合机理的探讨仍需要结合试验和模拟双重手段,从原子尺度进行深入研究。
-
(4)在对于冷喷涂Ti及Ti合金涂层的研究中,对于冷喷涂技术与其他技术如激光熔覆、搅拌摩擦焊等的融合研究较少。 由于冷喷涂钛基涂层粒子间的结合较弱,制约了涂层性能的提高,因此进一步寻求经济高效的后处理手段是提高涂层质量的有效途径。
-
冷喷涂技术在国外诸多领域已有应用,而国内尚处于初级阶段。 冷喷涂已成为Ti及Ti合金涂层制备的优选工艺,作为一种高效、快捷、环境友好型的涂层制备工艺,冷喷涂亦可实现包括Ti及Ti合金在内的众多金属部件的原位修复。 不仅如此,冷喷涂还可用于制备累加成形的Ti及Ti合金部件,从而成为新型的钛部件成型工艺。 虽然目前,受设备能力和工艺水平所限,冷喷涂制备的Ti及Ti合金涂层性能与块材相比还有很大差距,但是相信随着冷喷涂设备的不断改进以及冷喷涂工艺的不断发展,未来冷喷涂技术制备的Ti及Ti合金涂层性能也会随之不断提高。
-
参考文献
-
[1] ALKHIMOV A P,KOSAREV V F,NESTEROVICH N I,et al.Method and device for coating[P].European Patent B1,1995.
-
[2] 李文亚.冷喷涂特性[J].中国表面工程,2002,15(1):12-16.LI W Y.Cold spray characteristics[J].China Surface Engi-neering,2002,15(1):12-16(in Chinese).
-
[3] PAPYRIN A,KOSAREV V,KLINKOV S,et al.Cold Spray Technology[M].Novosibirsk;Elsevier,2006.
-
[4] ASSADI H,KREYE H,G RTNER F,et al.Cold spraying-A materials perspective [J].Acta Materialia,2016,116:382-407.
-
[5] HUANG X Y,XU G G,LV N,et al.14N NQR study of iso-meric effect [J].Atomic Energy Science and Technology,2016,50(2):338-342.
-
[6] LI W Y,ZHANG C,LIAO H,et al.Characterizations of cold-sprayed Nickel-Alumina composite coating with relative-ly large Nickel-coated Alumina powder[J].Surface & Coat-ings Technology,2008,202(19):4855-4860.
-
[7] GRTNER F,STOLTENHOFF T,VOYER J,et al.Mechani-cal properties of cold-sprayed and thermally sprayed copper coatings [J].Surface & Coatings Technology,2006,200(24):6770-6782.
-
[8] 李长久.中国冷喷涂研究进展 [J].中国表面工程,2009,22(4):5-14.LI C J.Research progress of cold spraying in China [J].China Surface Engineering,2009,22(4):5-14(in Chi-nese).
-
[9] HASSANI-GANGARAJ S M,MORIDI A,GUAGLIANO M.Critical review of corrosion protection by cold spray coatings [J].Surface Engineering,2015,31(11):803-815.
-
[10] GHELICHI R,MACDONALD D,BAGHERIFARD S,et al.Microstructure and fatigue behavior of cold spray coated Al5052[J].Acta Materialia,2012,60(19):6555-6561.
-
[11] MENG X,ZHANG J,ZHAO J,et al.Influence of gas tem-perature on microstructure and properties of cold spray 304SS coating [J].Journal of Materials Science & Technology,2011,27(9):809-815.
-
[12] KARTHIKEYAN J.The advantages and disadvantages of the cold spray coating process[J].Cold Spray Materials Deposi-tion Process,2007:62-71.
-
[13] FUKUMOTO M,WADA H,TANABE K,et al.Effect of substrate temperature on deposition behavior of copper parti-cles on substrate surfaces in the cold spray process[J].Jour-nal of Thermal Spray Technology,2007,16(5-6):643-650.
-
[14] JAKUPI P,KEECH P G,BARKER I,et al.Characteriza-tion of commercially cold sprayed copper coatings and deter-mination of the effects of impacting copper powder velocities [J].Journal of Nuclear Materials,2015,466:1-11.
-
[15] LI W Y,LIAO H,LI C J,et al.Numerical simulation of de-formation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying[J].Applied Surface Science,2007,253(11):5084-5091.
-
[16] LI C J,LI W Y,WANG Y Y.Formation of metastable pha-ses in cold-sprayed soft metallic deposit[J].Surface & Coat-ings Technology,2005,198(1-3):469-473.
-
[17] HUSSAIN T,MCCARTNEY D G,SHIPWAY P H,et al.Corrosion behavior of cold sprayed titanium coatings and free standing deposits[J].Journal of Thermal Spray Technology,2010,20(1-2):260-274.
-
[18] KHUN N W,TAN A W Y,BI K J W,et al.Effects of work-ing gas on wear and corrosion resistances of cold sprayed Ti-6Al-4V coatings[J].Surface & Coatings Technology,2016,302:1-12.
-
[19] KHUN N W,TAN A W Y,SUN W,et al.Effect of heat treatment temperature on microstructure and mechanical and tribological properties of cold sprayed Ti-6Al-4V coatings [J].Tribology Transactions,2016,60(6):1033-1042.
-
[20] SINGH R,RAUWALD K H,WESSEL E,et al.Effects of substrate roughness and spray-angle on deposition behavior of cold-sprayed Inconel 718[J].Surface & Coatings Technolo-gy,2017,319:249-259.
-
[21] JI G C,CHEN X,WANG H T,et al.Deformation behaviors of cold-sprayed WC-Co particles [J].Journal of Thermal Spray Technology,2015,24(6):1100-1110.
-
[22] PETERS M,KUMPFERT J,WARD C H,et al.Titanium alloys for aerospace applications[J].Advanced Engineering Materials,2003,5(6):419-427.
-
[23] ABDEL-HADY GEPREEL M,NIINOMI M.Biocompatibility of Ti-alloys for long-term implantation[J].Journal of the Me-chanical Behavior of Biomedical Materials,2013,20(Com-plete):407-415.
-
[24] GHELICHI R,GUAGLIANO M.Coating by the cold spray process:A state of the art[J].Frattura ed Integrità Strut-turale,2009,3(8):30-44.
-
[25] LI W Y,ZHANG C,WANG H T,et al.Significant influ-ences of metal reactivity and oxide films at particle surfaces on coating microstructure in cold spraying[J].Applied Sur-face Science,2007,253(7):3557-3562.
-
[26] DYKHUIZEN R,SMITH M.Gas dynamic principles of cold spray[J].Journal of Thermal spray technology,1998,7(2):205-212.
-
[27] LI C J,LI W Y.Deposition characteristics of titanium coat-ing in cold spraying [J].Surface & Coatings Technology,2003,167(2-3):278-283.
-
[28] WONG W,REZAEIAN A,IRISSOU E,et al.Cold spray characteristics of commercially pure Ti and Ti-6Al-4V[J].Advanced Materials Research,2010,89-91:639-644.
-
[29] PELLETIER J L.Development of Ti-6Al-4V Coating onto Ti-6Al-4V substrate using low pressure cold spray and pulse gas dynamic spray[D].Ottawa:University of Ottawa,2013.
-
[30] YIN S,SUO X,SU J,et al.Effects of substrate hardness and spray angle on the deposition behavior of cold-sprayed Ti particles[J].Journal of Thermal Spray Technology,2013,23(1-2):76-83.
-
[31] ZAHIRI S H,ANTONIO C I,JAHEDI M.Elimination of po-rosity in directly fabricated titanium via cold gas dynamic spraying[J].Journal of Materials Processing Technology,2009,209(2):922-929.
-
[32] BHATTIPROLU V S,JOJNSON K W,CRAWFORD G A.Influence of powder microstructure on the microstructural evo-lution of as-sprayed and heat treated cold-sprayed Ti-6Al-4V coatings[J].Journal of Thermal Spray Technology,2019,28:174-188.
-
[33] MUNAGALA V N V,IMBRIGLIO S I,CHROMIK R R.The influence of powder properties on the adhesion strength and microstructural evolution of cold sprayed Ti6Al4V single splats[J].Materials Letters,2019,244:58-61.
-
[34] SCHMIDT T,GRTNER F,ASSADI H,et al.Development of a generalized parameter window for cold spray deposition [J].Acta materialia,2006,54(3):729-742.
-
[35] YIN S,SUO X,GUO Z,et al.Deposition features of cold sprayed copper particles on preheated substrate[J].Surface & Coatings Technology,2015,268:252-256.
-
[36] WONG W,VO P,IRISSOU E,et al.Effect of particle mor-phology and size distribution on cold-sprayed pure titanium coatings[J].Journal of Thermal Spray Technology,2013,22(7):1140-1153.
-
[37] CINCA N,BARBOSA M,DOSTA S,et al.Study of Ti dep-osition onto Al alloy by cold gas spraying [J].Surface & Coatings Technology,2010,205(4):1096-1102.
-
[38] BAE G,KUMAR S,YOON S,et al.Bonding features and associated mechanisms in kinetic sprayed titanium coatings [J].Acta Materialia,2009,57(19):5654-5666.
-
[39] BLOSE R,WALKER B,WALKER R,et al.Depositing ti-tanium alloy additive features to forgings and extrusions using the cold spray process[C]∥ Thermal Spray 2006:Building on 100 Years of Success,2006:15-18.
-
[40] HUANG R.The importance of Optimizing Nozzle dimensions for cold spray process [ C] ∥ Proceedings of the Thermal Spray Conference,2015.
-
[41] LI W Y,LIAO H,WANG H T,et al.Optimal design of a convergent-barrel cold spray nozzle by numerical method[J].Applied Surface Science,2006,253(2):708-713.
-
[42] MACDONALD D,LEBLANC-ROBERT S,FERN NDEZ R,et al.Effect of nozzle material on downstream lateral injection cold spray performance[J].Journal of Thermal Spray Tech-nology,2016,25(6):1149-1157.
-
[43] VIDALLER M V,LIST A,GAERTNER F,et al.Single im-pact bonding of cold sprayed Ti-6Al-4V powders on differentsubstrates[J].Journal of Thermal Spray Technology,2015,24(4):644-658.
-
[44] BAE G,XIONG Y,KUMAR S,et al.General aspects of in-terface bonding in kinetic sprayed coatings[J].Acta Materi-alia,2008,56(17):4858-4868.
-
[45] GOLDBAUM D,SHOCKLEY J M,CHROMIK R R,et al.The effect of deposition conditions on adhesion strength of Ti and Ti6Al4V cold spray splats[J].Journal of Thermal Spray Technology,2012,21(2):288-303.
-
[46] PRICE T,SHIPWAY P,MCCARTNEY D.Effect of cold spray deposition of a titanium coating on fatigue behavior of a titanium alloy [J].Journal of Thermal Spray Technology,2006,15(4):507-512.
-
[47] PERTON M,COSTIL S,WONG W,et al.Effect of pulsed laser ablation and continuous laser heating on the adhesion and cohesion of cold sprayed Ti-6Al-4V coatings[J].Journal of Thermal Spray Technology,2012,21(6):1322-1333.
-
[48] CHRISTOULIS D K,GUETTA S,GUIPONT V,et al.The influence of the substrate on the deposition of cold-sprayed ti-tanium:an experimental and numerical study[J].Journal of Thermal Spray Technology,2011,20(3):523-533.
-
[49] HUSSAIN T.Cold spraying of titanium:A review of bonding mechanisms,microstructure and properties [ C] ∥ Proceed-ings of the Key Engineering Materials,2013.
-
[50] WANG H R,HOU B R,WANG J,et al.Effect of process conditions on microstructure and corrosion resistance of cold-sprayed Ti coatings[J].Journal of Thermal Spray Technolo-gy,2008,17(5-6):736-741.
-
[51] LI W Y,ZHANG C,GUO X,et al.Study on impact fusion at particle interfaces and its effect on coating microstructure in cold spraying[J].Applied Surface Science,2007,254(2):517-526.
-
[52] MARROCCO T,MCCARTNEY D G,SHIPWAY P H,et al.Production of titanium deposits by cold-gas dynamic spray:Numerical modeling and experimental characterization [J].Journal of Thermal Spray Technology,2006,15(2):263-272.
-
[53] HUSSAIN T.A study of bonding mechanisms and corrosion behaviour of cold sprayed coatings[D].Nottingham:Univer-sity of Nottingham,2011.
-
[54] ZHOU H,LI C,JI G,et al.Local microstructure inhomoge-neity and gas temperature effect in in-situ shot-peening assis-ted cold-sprayed Ti-6Al-4V coating [J].Journal of Alloys and Compounds,2018,766:694-704.
-
[55] 靳磊,崔向中,丁元法,等.冷喷涂TC4涂层临界沉积速度计算及制备涂层性能研究[J].表面技术,2017,46(8):96-101.JIN L,CUI X Z,DING Y F,et al.Calculation of critical deposition rate of cold sprayed TC4 coating and study on coat-ing performance [J].Surface Technology,2017,46(8):96-101(in Chinese).
-
[56] ZENG L,BIELER T.Effects of working,heat treatment,and aging on microstructural evolution and crystallographic texture of α,α′,α ″and β phases in T-6Al-4V wire[J].Materials Science and Engineering:A,2005,392(1-2):403-414.
-
[57] TAO Y,XIONG T Y,SUN C,et al.Effect of α-Al2O3 on the properties of cold sprayed Al/α-Al2O3composite coatingson AZ91D magnesium alloy [J].Applied Surface Science,2009,256(1):261-266.
-
[58] LUO X T,WEI Y K,WANG Y,et al.Microstructure and mechanical property of Ti and Ti6Al4V prepared by an in-situ shot peening assisted cold spraying[J].Materials and De-sign,2015,85:527-533.
-
[59] FU S L,LI C X,WEI Y K,et al.Novel method of alumi-num to copper bonding by cold spray[J].Journal of Thermal Spray Technology,2018,27(4):624-640.
-
[60] LUO X T,YAO M L,MA N,et al.Deposition behavior,microstructure and mechanical properties of an in-situ micro-forging assisted cold spray enabled additively manufactured Inconel 718 alloy [J].Materials and Design,2018,155:384-395.
-
[61] XIE Y,YIN S,CHEN C,et al.New insights into the coat-ing/substrate interfacial bonding mechanism in cold spray [J].Scripta Materialia,2016,125:1-4.
-
[62] MENG F,HU D,GAO Y,et al.Cold-spray bonding mecha-nisms and deposition efficiency prediction for particle/sub-strate with distinct deformability[J].Materials and Design,2016,109:503-510.
-
[63] HUANG R,MA W,FUKANUMA H.Development of ultra-strong adhesive strength coatings using cold spray[J].Sur-face & Coatings Technology,2014,258:832-841.
-
[64] ZAHIRI S H,FRASER D,JAHEDI M.Recrystallization of cold spray-fabricated CP titanium structures[J].Journal of Thermal Spray Technology,2008,18(1):16-22.
-
[65] LI W Y,ZHANG C,GUO X,et al.Ti and Ti-6Al-4V coat-ings by cold spraying and microstructure modification by heat treatment[J].Advanced Engineering Materials,2007,9(5):418-423.
-
[66] HUANG R,SONE M,MA W,et al.The effects of heat treatment on the mechanical properties of cold-sprayed coat-ings[J].Surface & Coatings Technology,2015,261:278-288.
-
[67] VO P,IRISSOU E,LEGOUX J G,et al.Mechanical and microstructural characterization of cold-sprayed Ti-6Al-4V af-ter heat treatment[J].Journal of Thermal Spray Technology,2013,22(6):954-964.
-
[68] LI W Y,ZHANG C,GUO X,et al.Ti and Ti-6Al-4V coat-ings by cold spraying and microstructure modification by heat treatment[J].Advanced Engineering Materials,2007,9(5):418-423.
-
[69] WONG W,IRISSOU E,LEGOUX J G,et al.Powder pro-cessing and coating heat treatment on cold sprayed Ti-6Al-4V alloy [C]∥ Proceedings of the Materials Science Forum,F,2012.
-
[70] GARRIDO M A,SIRVENT P,POZA P.Evaluation of me-chanical properties of Ti6Al4V cold sprayed coatings [J].Surface Engineering,2017,34(5):399-406.
-
[71] WANG F F,LI W Y,YU M,et al.Prediction of critical ve-locity during cold spraying based on a coupled thermome-chanical eulerian model[J].Journal of Thermal Spray Tech-nology,2014,23(1-2):60-67.
-
[72] BLOSE R E,WALKER B H,WALKER R M,et al.Newopportunities to use cold spray process for applying additivefeatures to titanium alloys[J].Metal Powder Report,2006,61(9):30-37.pressing(HIP)on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufac-turing[J].Additive Manufacturing,2019,27:595-605.
-
[73] QIU X,QI L,ZAN Y N,et al.In-situ Sip/A380 alloy nano/micro composite formation through cold spray additive manufacturing and subsequent hot rolling treatment:Micro-structure and mechanical properties [J].Journal of Alloys and Compounds,2019,780:597-606.
-
[74] HODDER K J,IZADI H,MCDONALD A G,et al.Fabrica-tion of aluminum-alumina metal matrix composites via cold gas dynamic spraying at low pressure followed by friction stir processing [J].Materials Science and Engineering:A,2012,556:114-121.
-
[75] YANG D M,TIAN B H.Microstructure and mechanical properties of FeAl coating deposited by low pressure plasma spray[J].Applied Mechanics and Materials,2013,333-335:1916-1920.
-
[76] SRIVATSAN T S,LAVERNIA E J.Use of spray techniques to synthesize particulate-reinforced metal-matrix composites [J].Journal of Materials Science,1992,27(22):5965-5981.
-
[77] KURODA S,KAWAKITA J,WATANABE M,et al.Warm spraying:A novel coating process based on high-velocity im-pact of solid particles[J].Science and Technology of Ad-vanced Materials,2008,9(3):1-17.
-
[78] KAWAKITA J,KATANODA H,WATANABE M,et al.Warm spraying:An improved spray process to deposit novel coatings [J],Surface & Coatings Technology,2008,202(18):4369-4373.
-
[79] KURODA S,WATANABE M,KIM K H,et al.Current sta-tus and future prospects of warm spray technology[J],Jour-nal of Thermal Spray Technology,2011,20(4):653-676.
-
[80] WATANABE M,BRAUNS C,KOMATSU M,et al.Effect of nitrogen flow rate on microstructures and mechanical prop-erties of metallic coatings by warm spray deposition[J].Sur-face & Coatings Technology,2013,232:587-599.
-
[81] MOLAK R M,ARAKI H,WATANABE M,et al.Warm spray forming of Ti-6Al-4V[J].Journal of Thermal Spray Technology,2014,23(1):197-212.
-
[82] 程正明,刘敏,邓春明,等.喷距对低温超音速火焰喷涂钛涂层显微结构与性能的影响[J].表面技术,2014,43(2):13-17.CHENG Z M,LIU M,DENG C M,et al.The effect of spray distance on the microstructure and performance of low-tem-perature supersonic flame sprayed titanium coating[J].Sur-face Technology,2014,43(2):13-17(in Chinese).
-
摘要
冷喷涂过程的低温特性决定了其适合制备氧化敏感性的 Ti 及 Ti 合金涂层,由于 Ti 金属的难变形性,使得很难得到高质量的冷喷涂涂层。 国内外学者对冷喷涂制备 Ti 及 Ti 合金涂层开展了初步研究工作。 文中在大量文献分析的基础上对冷喷涂制备 Ti 及 Ti 合金涂层组织调控手段进行了分类总结。 目前,对冷喷钛及钛合金涂层的调控手段主要集中在喷涂参数、粉末状态、基体状态和喷嘴等 4 个方面。 除此之外,一些新兴的技术如原位喷丸辅助技术、温喷涂技术也被证明是一种有效的增强难变形粒子变形的技术。 未来对冷喷涂 Ti 及 Ti 合金涂层的研究既要注重冷喷涂工艺本身,又要加强与其他加工技术的融合。
Abstract
The low temperature characteristic of the cold spray process determines its suitability for the preparation of oxidation- sensitive Ti and Ti alloy coatings. Due to the poor deformability of Ti metal, it is difficult to obtain high quality cold spray coat- ings. At present, domestic and foreign scholars have carried out lots of research work on cold-sprayed Ti and Ti alloy coatings. Based on a large number of literatures, this paper classified and summarized the microstructure control methods of cold spray Ti- based coatings. The control methods of cold spray titanium coatings mainly focus on four aspects of spraying parameters: Powder state, substrate state, powder condition and nozzle. Some emerging techniques such as in-situ shot peening and warm spraying have also proved to be an effective auxiliary for enhancing particle deformation. In the future, the research on cold-sprayed Ti and Ti alloy coatings should focus on the cold-spraying process itself and integration with other processing technologies.
关键词
涂层 ; 冷喷涂 ; Ti 及 Ti 合金 ; 组织调控
Keywords
coating ; cold spraying ; Ti and Ti alloy ; microstructure regulation